Compare commits

...

85 Commits

Author SHA1 Message Date
ReinUsesLisp
e85066dac7 gl_rasterizer: Remove texture unbinding after dispatching a draw call
Unbinding was required when OpenGL delete operations didn't unbind a
resource if it was bound. This is no longer needed and can be removed.
2019-02-28 00:17:50 -03:00
ReinUsesLisp
bb3ab7d66c gl_state: Fixup multibind bug 2019-02-28 00:17:03 -03:00
bunnei
49c6d21b31 Merge pull request #2174 from lioncash/fwd
service/hid: Amend forward declaration of ServiceManager
2019-02-27 21:20:06 -05:00
bunnei
1b13859af8 Merge pull request #2152 from ReinUsesLisp/vk-stream-buffer
vk_stream_buffer: Implement a stream buffer
2019-02-27 21:19:15 -05:00
bunnei
1f5d6a8fed Merge pull request #2121 from FernandoS27/texception2
Improve the Accuracy of the Rasterizer Cache through a Texception Pass
2019-02-27 21:17:55 -05:00
bunnei
66f4fd4c81 Merge pull request #2172 from lioncash/reorder
gl_rasterizer/vk_memory_manager: Silence -Wreorder warnings
2019-02-27 21:14:20 -05:00
Fernando Sahmkow
7ea097e5c2 Devirtualize Register/Unregister and use a wrapper instead. 2019-02-27 21:58:50 -04:00
Fernando Sahmkow
5a9204dbd7 Corrections and redesign. 2019-02-27 21:58:49 -04:00
Fernando Sahmkow
d6b9b51606 Fix linux compile error. 2019-02-27 21:58:48 -04:00
Fernando Sahmkow
e64fa4d2ea Remove NotifyFrameBuffer as we are doing a texception pass every drawcall. 2019-02-27 21:58:47 -04:00
Fernando Sahmkow
3558c88442 Remove certain optimizations that caused texception to fail in certain scenarios. 2019-02-27 21:58:45 -04:00
Fernando Sahmkow
e9d84ef22c Bug fixes and formatting 2019-02-27 21:58:44 -04:00
Fernando Sahmkow
5bc82d124c rasterizer_cache_gl: Implement Texception Pass 2019-02-27 21:58:43 -04:00
Fernando Sahmkow
8932001610 rasterizer_cache_gl: Implement Partial Reinterpretation of Surfaces. 2019-02-27 21:58:40 -04:00
Fernando Sahmkow
44ea2810e4 rasterizer_cache: mark reinterpreted surfaces and add ability to reload marked surfaces on next use. 2019-02-27 21:58:39 -04:00
Fernando Sahmkow
d583fc1e97 rasterizer_cache_gl: Notify on framebuffer change 2019-02-27 21:58:37 -04:00
Fernando Sahmkow
45b6d2d349 rasterizer_cache: Expose FlushObject to Child classes and allow redefining of Register and Unregister 2019-02-27 21:57:33 -04:00
bunnei
f15e2dd881 Merge pull request #2163 from ReinUsesLisp/bitset-dirty
maxwell_3d: Use std::bitset to manage dirty flags
2019-02-27 20:50:08 -05:00
Annomatg
ef84c70d22 Speed up memory page mapping (#2141)
- Memory::MapPages total samplecount was reduced from 4.6% to 1.06%.
- From main menu into the game from 1.03% to 0.35%
2019-02-27 17:22:47 -05:00
bunnei
532dda0499 Merge pull request #2176 from lioncash/com
audio_core/cubeb_sink: Ensure COM is initialized on Windows prior to calling cubeb_init
2019-02-27 17:12:06 -05:00
Lioncash
1068c1b06f audio_core/cubeb_sink: Ensure COM is initialized on Windows prior to calling cubeb_init
cubeb now requires that COM explicitly be initialized on the thread
prior to calling cubeb_init.
2019-02-27 16:14:53 -05:00
Lioncash
6335bf136f service/hid: Amend forward declaration of ServiceManager
The SM namespace is within the Service namespace, so this was forward
declaring a type that didn't exist.
2019-02-27 11:36:48 -05:00
bunnei
42f7c11021 Merge pull request #2169 from lioncash/naming
audio_core/audio_renderer: Provide names for some parameters of AudioRendererParameter
2019-02-27 11:26:54 -05:00
bunnei
14430f7df9 Merge pull request #2170 from lioncash/emu-window
core/frontend/emu_window: Make ClipToTouchScreen a const member function
2019-02-27 11:26:24 -05:00
bunnei
eb5a3dd1c7 Merge pull request #2161 from lioncash/handle-table
kernel/handle_table: Allow process capabilities to limit the handle table size
2019-02-27 11:22:26 -05:00
bunnei
be1a1584fc Merge pull request #2168 from lioncash/cubeb
externals: Update cubeb to the master version
2019-02-27 11:20:14 -05:00
bunnei
66e023fba2 Merge pull request #2167 from lioncash/namespace
common: Move Quaternion, Rectangle, Vec2, Vec3, and Vec4 into the Common namespace
2019-02-27 11:19:53 -05:00
bunnei
b27e6ad912 Merge pull request #2171 from lioncash/pragma
gl_shader_disk_cache: Remove #pragma once from cpp file
2019-02-27 11:19:17 -05:00
Lioncash
16ea93c11e vk_memory_manager: Reorder constructor initializer list in terms of member declaration order
Reorders members in the order that they would actually be initialized
in. Silences a -Wreorder warning.
2019-02-27 11:08:19 -05:00
Lioncash
a6a783b3dc gl_rasterizer: Reorder constructor initializer list in terms of member declaration order
Orders the members in the order they would actually be initialized in.
Silences a -Wreorder warning.
2019-02-27 11:08:19 -05:00
Lioncash
e7eff72e83 gl_shader_disk_cache: Remove #pragma once from cpp file
This is only necessary in headers. Silences a warning with clang.
2019-02-27 11:02:49 -05:00
Lioncash
46b3209abb core/frontend/emu_window: Make ClipToTouchScreen a const member function
This member function doesn't modify instance state, so it can have the
const specifier applied to it.
2019-02-27 08:54:42 -05:00
Lioncash
0e1b5acc6a audio_core/audio_renderer: Name previously unknown parameters of AudioRendererParameter
Provides names for previously unknown entries (aside from the two u8
that appear to be padding bytes, and a single word that also appears
to be reserved or padding).

This will be useful in subsequent changes when unstubbing behavior related
to the audio renderer services.
2019-02-27 06:09:07 -05:00
Lioncash
b9238edd0d common/math_util: Move contents into the Common namespace
These types are within the common library, so they should be within the
Common namespace.
2019-02-27 03:38:39 -05:00
Lioncash
e56f32a071 externals: Update cubeb to 6f2420de8f155b10330cf973900ac7bdbfee589d
Keeps the audio library we use up to date.
2019-02-27 01:21:51 -05:00
Lioncash
1b855efd5e common/vector_math: Move Vec[x] types into the Common namespace
These types are within the common library, so they should be using the
Common namespace.
2019-02-26 22:38:36 -05:00
Lioncash
a1574aabd5 common/quaternion: Move Quaternion into the Common namespace
Quaternion is within the common library, so it should be using the
Common namespace.
2019-02-26 22:31:17 -05:00
bunnei
10d1d58390 Merge pull request #2164 from ReinUsesLisp/configure-blit
renderer_opengl: Update pixel format tracking
2019-02-26 12:12:10 -05:00
ReinUsesLisp
d91e35a50a renderer_opengl: Update pixel format tracking 2019-02-26 03:47:16 -03:00
ReinUsesLisp
5219edd715 maxwell_3d: Use std::bitset to manage dirty flags 2019-02-26 03:01:48 -03:00
ReinUsesLisp
730eb1dad7 vk_stream_buffer: Remove copy code path 2019-02-26 02:09:43 -03:00
bunnei
c3471bf618 Merge pull request #2156 from FreddyFunk/patch-1
file_sys/vfs_vector: Fix ignored offset on Write
2019-02-25 18:28:58 -05:00
bunnei
da1b45de34 Merge pull request #2158 from lioncash/table
service/vi: Update IManagerDisplayService's function table
2019-02-25 18:27:43 -05:00
bunnei
1cffd3848b Merge pull request #2160 from lioncash/audio-warn
audio_core: Resolve compilation warnings
2019-02-25 18:25:36 -05:00
bunnei
93c1630570 Merge pull request #2159 from lioncash/warn
shader/track: Resolve variable shadowing warnings
2019-02-25 13:26:00 -05:00
Lioncash
d29f9e9709 kernel/handle_table: Make local variables as const where applicable
Makes immutable state explicit.
2019-02-25 11:12:38 -05:00
Lioncash
5167d1577d kernel/handle_table: Allow process capabilities to limit the handle table size
The kernel allows restricting the total size of the handle table through
the process capability descriptors. Until now, this functionality wasn't
hooked up. With this, the process handle tables become properly restricted.

In the case of metadata-less executables, the handle table will assume
the maximum size is requested, preserving the behavior that existed
before these changes.
2019-02-25 11:12:32 -05:00
Lioncash
4f8cd74061 kernel/handle-table: In-class initialize data members
Directly initializes members where applicable.
2019-02-25 10:14:05 -05:00
Lioncash
0220862ba5 kernel/handle_table: Resolve truncation warnings
Avoids implicit truncation warnings from u32 -> u16 (the truncation is
desirable behavior here).
2019-02-25 09:53:21 -05:00
Lioncash
04d7b7e09d audio_core/cubeb_sink: Initialize CubebSinkStream's last_frame data member
Ensures that all member variables are initialized in a deterministic
manner across the board.
2019-02-25 09:40:37 -05:00
Lioncash
8250f9bb1c audio_core/cubeb_sink: Add override specifier to destructor
CubebSinkStream inherits from a base class with a virtual destructor, so
override can be appended to CubebSinkStream's destructor.
2019-02-25 09:38:27 -05:00
Lioncash
7cdeec20ec audio_core/cubeb_sink: Resolve variable shadowing warnings in SamplesInQueue
The name of the parameter was shadowing the member variable of the same
name. Instead, alter the name of the parameter to prevent said
shadowing.
2019-02-25 09:28:51 -05:00
Lioncash
a12f4efa2f audio_core/codec: Resolve truncation warnings within DecodeADPCM
The assignments here were performing an implicit truncation from int to
s16. Make it explicit that this is desired behavior.
2019-02-25 09:24:39 -05:00
Lioncash
c1b2e35625 shader/track: Resolve variable shadowing warnings 2019-02-25 09:10:59 -05:00
Lioncash
be7dad5e7e service/vi: Update IManagerDisplayService's function table
Amends it to add the 7.0.0+ CreateStrayLayer function.
2019-02-25 08:09:00 -05:00
bunnei
c07987dfab Merge pull request #2118 from FernandoS27/ipa-improve
shader_decompiler: Improve Accuracy of Attribute Interpolation.
2019-02-24 23:04:22 -05:00
bunnei
c4243c07cc Merge pull request #2119 from FernandoS27/fix-copy
rasterizer_cache_gl: Only do fast layered copy on the same format.
2019-02-24 23:03:52 -05:00
bunnei
c6170565b5 Merge pull request #2155 from FearlessTobi/port-4655
Port citra-emu/citra#4655: "Remove GCC version checks"
2019-02-24 23:03:13 -05:00
bunnei
57985fb16a Merge pull request #2144 from lioncash/factor
service/vi: Convert Display and Layer structs into classes
2019-02-24 23:02:50 -05:00
Frederic L
517933adcb file_sys/vfs_vector: Fix ignored offset on Write 2019-02-25 00:27:49 +01:00
tgsm
030814b1cb Remove GCC version checks
Citra can't be compiled using GCC <7 because of required C++17 support, so these version checks don't need to exist anymore.
2019-02-24 15:24:06 +01:00
bunnei
90c780e6f3 Merge pull request #2139 from degasus/dma_pusher
video_core/dma_pusher: The full list of headers at once.
2019-02-24 04:15:49 -05:00
ReinUsesLisp
33a0597603 vk_stream_buffer: Implement a stream buffer
This manages two kinds of streaming buffers: one for unified memory
models and one for dedicated GPUs. The first one skips the copy from the
staging buffer to the real buffer, since it creates an unified buffer.

This implementation waits for all fences to finish their operation
before "invalidating". This is suboptimal since it should allocate
another buffer or start searching from the beginning. There is room for
improvement here.

This could also handle AMD's "pinned" memory (a heap with 256 MiB) that
seems to be designed for buffer streaming.
2019-02-24 04:27:51 -03:00
ReinUsesLisp
281a8bf259 vk_resource_manager: Minor VKFenceWatch changes 2019-02-24 04:19:04 -03:00
bunnei
f7090bacc5 Merge pull request #2146 from ReinUsesLisp/vulkan-scheduler
vk_scheduler: Implement a scheduler
2019-02-23 23:32:43 -05:00
bunnei
d062991643 Merge pull request #2150 from ReinUsesLisp/fixup-layer-swizzle
gl_rasterizer_cache: Fixup parameter order in layered swizzle
2019-02-23 23:31:34 -05:00
bunnei
4ab978d670 Merge pull request #2151 from ReinUsesLisp/fixup-vk-memory-manager
vk_memory_manager: Fixup commit interval allocation
2019-02-23 23:29:53 -05:00
ReinUsesLisp
92050c4d86 vk_memory_manager: Fixup commit interval allocation
VKMemoryCommitImpl was using as the end of its interval "begin + end".
That ended up wasting memory.
2019-02-24 01:04:41 -03:00
ReinUsesLisp
abef11a540 gl_rasterizer_cache: Fixup parameter order in layered swizzle 2019-02-23 23:27:30 -03:00
ReinUsesLisp
f546fb35ed vk_scheduler: Implement a scheduler
The scheduler abstracts command buffer and fence management with an
interface that's able to do OpenGL-like operations on Vulkan command
buffers.

It returns by value a command buffer and fence that have to be used for
subsequent operations until Flush or Finish is executed, after that the
current execution context (the pair of command buffers and fences) gets
invalidated a new one must be fetched. Thankfully validation layers will
quickly detect if this is skipped throwing an error due to modifications
to a sent command buffer.
2019-02-22 01:33:32 -03:00
bunnei
94b27bb8a5 Merge pull request #2138 from ReinUsesLisp/vulkan-memory-manager
vk_memory_manager: Implement memory manager
2019-02-21 22:26:54 -05:00
Lioncash
90528f1326 service/nvflinger: Store BufferQueue instances as regular data members
The NVFlinger service is already passed into services that need to
guarantee its lifetime, so the BufferQueue instances will already live
as long as they're needed. Making them std::shared_ptr instances in this
case is unnecessary.
2019-02-21 22:09:46 -05:00
Lioncash
fd15730767 service/vi/vi_layer: Convert Layer struct into a class
Like the previous changes made to the Display struct, this prepares the
Layer struct for changes to its interface. Given Layer will be given
more invariants in the future, we convert it into a class to better
signify that.
2019-02-21 12:13:09 -05:00
Lioncash
fa4dc2cf42 service/nvflinger: Move display specifics over to vi_display
With the display and layer structures relocated to the vi service, we
can begin giving these a proper interface before beginning to properly
support the display types.

This converts the display struct into a class and provides it with the
necessary functions to preserve behavior within the NVFlinger class.
2019-02-21 12:13:04 -05:00
bunnei
9539c4203b Merge pull request #2125 from ReinUsesLisp/fixup-glstate
gl_state: Synchronize gl_state even when state is disabled
2019-02-20 21:47:46 -05:00
bunnei
ae437320c8 Merge pull request #2130 from lioncash/system_engine
video_core: Remove usages of System::GetInstance() within the engines
2019-02-20 21:24:56 -05:00
Jungy
3273f93cd5 Fixes Unicode Key File Directories (#2120)
* Fixes Unicode Key File Directories

Adds code so that when loading a file it converts to UTF16 first, to
ensure the files can be opened. Code borrowed from FileUtil::Exists.

* Update src/core/crypto/key_manager.cpp

Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>

* Update src/core/crypto/key_manager.cpp

Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>

* Using FileUtil instead to be cleaner.

* Update src/core/crypto/key_manager.cpp

Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>
2019-02-20 21:24:25 -05:00
bunnei
ef559f5741 Merge pull request #2142 from lioncash/relocate
service/nvflinger: Relocate definitions of Layer and Display to the vi service
2019-02-20 21:21:55 -05:00
Markus Wick
6dd40976d0 video_core/dma_pusher: Simplyfy Step() logic.
As fetching command list headers and and the list of command headers is a fixed 1:1 relation now, they can be implemented within a single call.
This cleans up the Step() logic quite a bit.
2019-02-19 10:28:42 +01:00
Markus Wick
717394c980 video_core/dma_pusher: The full list of headers at once.
Fetching every u32 from memory leads to a big overhead. So let's fetch all of them as a block if possible.
This reduces the Memory::* calls by the dma_pusher by a factor of 10.
2019-02-19 09:58:38 +01:00
ReinUsesLisp
b675c97cdd vk_memory_manager: Implement memory manager
A memory manager object handles the memory allocations for a device. It
allocates chunks of Vulkan memory objects and then suballocates.
2019-02-19 03:42:28 -03:00
Lioncash
a8fa5019b5 video_core: Remove usages of System::GetInstance() within the engines
Avoids the use of the global accessor in favor of explicitly making the
system a dependency within the interface.
2019-02-15 22:06:23 -05:00
ReinUsesLisp
8dfc81239f gl_state: Synchronize gl_state even when state is disabled
There are some potential edge cases where gl_state may fail to track the
state if a related state changes while the toggle is disabled or it
didn't change. This addresses that.
2019-02-15 01:30:14 -03:00
Fernando Sahmkow
10682ad7e0 shader_decompiler: Improve Accuracy of Attribute Interpolation. 2019-02-14 03:25:07 -04:00
Fernando Sahmkow
bb41683394 rasterizer_cache_gl: Only do fast layered copy on the same format. As
glCopyImageSubData does not support different formats.
2019-02-13 16:55:00 -04:00
78 changed files with 1561 additions and 478 deletions

View File

@@ -46,16 +46,18 @@ struct AudioRendererParameter {
u32_le sample_rate;
u32_le sample_count;
u32_le mix_buffer_count;
u32_le unknown_c;
u32_le submix_count;
u32_le voice_count;
u32_le sink_count;
u32_le effect_count;
u32_le unknown_1c;
u8 unknown_20;
INSERT_PADDING_BYTES(3);
u32_le performance_frame_count;
u8 is_voice_drop_enabled;
u8 unknown_21;
u8 unknown_22;
u8 execution_mode;
u32_le splitter_count;
u32_le unknown_2c;
INSERT_PADDING_WORDS(1);
u32_le num_splitter_send_channels;
u32_le unknown_30;
u32_le revision;
};
static_assert(sizeof(AudioRendererParameter) == 52, "AudioRendererParameter is an invalid size");

View File

@@ -68,8 +68,8 @@ std::vector<s16> DecodeADPCM(const u8* const data, std::size_t size, const ADPCM
}
}
state.yn1 = yn1;
state.yn2 = yn2;
state.yn1 = static_cast<s16>(yn1);
state.yn2 = static_cast<s16>(yn2);
return ret;
}

View File

@@ -12,6 +12,10 @@
#include "common/ring_buffer.h"
#include "core/settings.h"
#ifdef _MSC_VER
#include <objbase.h>
#endif
namespace AudioCore {
class CubebSinkStream final : public SinkStream {
@@ -46,7 +50,7 @@ public:
}
}
~CubebSinkStream() {
~CubebSinkStream() override {
if (!ctx) {
return;
}
@@ -75,11 +79,11 @@ public:
queue.Push(samples);
}
std::size_t SamplesInQueue(u32 num_channels) const override {
std::size_t SamplesInQueue(u32 channel_count) const override {
if (!ctx)
return 0;
return queue.Size() / num_channels;
return queue.Size() / channel_count;
}
void Flush() override {
@@ -98,7 +102,7 @@ private:
u32 num_channels{};
Common::RingBuffer<s16, 0x10000> queue;
std::array<s16, 2> last_frame;
std::array<s16, 2> last_frame{};
std::atomic<bool> should_flush{};
TimeStretcher time_stretch;
@@ -108,6 +112,11 @@ private:
};
CubebSink::CubebSink(std::string_view target_device_name) {
// Cubeb requires COM to be initialized on the thread calling cubeb_init on Windows
#ifdef _MSC_VER
com_init_result = CoInitializeEx(nullptr, COINIT_MULTITHREADED);
#endif
if (cubeb_init(&ctx, "yuzu", nullptr) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "cubeb_init failed");
return;
@@ -142,6 +151,12 @@ CubebSink::~CubebSink() {
}
cubeb_destroy(ctx);
#ifdef _MSC_VER
if (SUCCEEDED(com_init_result)) {
CoUninitialize();
}
#endif
}
SinkStream& CubebSink::AcquireSinkStream(u32 sample_rate, u32 num_channels,

View File

@@ -25,6 +25,10 @@ private:
cubeb* ctx{};
cubeb_devid output_device{};
std::vector<SinkStreamPtr> sink_streams;
#ifdef _MSC_VER
u32 com_init_result = 0;
#endif
};
std::vector<std::string> ListCubebSinkDevices();

View File

@@ -55,36 +55,36 @@ constexpr u8 Convert8To6(u8 value) {
/**
* Decode a color stored in RGBA8 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRGBA8(const u8* bytes) {
inline Common::Vec4<u8> DecodeRGBA8(const u8* bytes) {
return {bytes[3], bytes[2], bytes[1], bytes[0]};
}
/**
* Decode a color stored in RGB8 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRGB8(const u8* bytes) {
inline Common::Vec4<u8> DecodeRGB8(const u8* bytes) {
return {bytes[2], bytes[1], bytes[0], 255};
}
/**
* Decode a color stored in RG8 (aka HILO8) format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRG8(const u8* bytes) {
inline Common::Vec4<u8> DecodeRG8(const u8* bytes) {
return {bytes[1], bytes[0], 0, 255};
}
/**
* Decode a color stored in RGB565 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRGB565(const u8* bytes) {
inline Common::Vec4<u8> DecodeRGB565(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert5To8((pixel >> 11) & 0x1F), Convert6To8((pixel >> 5) & 0x3F),
@@ -94,9 +94,9 @@ inline Math::Vec4<u8> DecodeRGB565(const u8* bytes) {
/**
* Decode a color stored in RGB5A1 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
inline Common::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert5To8((pixel >> 11) & 0x1F), Convert5To8((pixel >> 6) & 0x1F),
@@ -106,9 +106,9 @@ inline Math::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
/**
* Decode a color stored in RGBA4 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Math::Vec4<u8>
* @return Result color decoded as Common::Vec4<u8>
*/
inline Math::Vec4<u8> DecodeRGBA4(const u8* bytes) {
inline Common::Vec4<u8> DecodeRGBA4(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert4To8((pixel >> 12) & 0xF), Convert4To8((pixel >> 8) & 0xF),
@@ -138,9 +138,9 @@ inline u32 DecodeD24(const u8* bytes) {
/**
* Decode a depth value and a stencil value stored in D24S8 format
* @param bytes Pointer to encoded source values
* @return Resulting values stored as a Math::Vec2
* @return Resulting values stored as a Common::Vec2
*/
inline Math::Vec2<u32> DecodeD24S8(const u8* bytes) {
inline Common::Vec2<u32> DecodeD24S8(const u8* bytes) {
return {static_cast<u32>((bytes[2] << 16) | (bytes[1] << 8) | bytes[0]), bytes[3]};
}
@@ -149,7 +149,7 @@ inline Math::Vec2<u32> DecodeD24S8(const u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGBA8(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGBA8(const Common::Vec4<u8>& color, u8* bytes) {
bytes[3] = color.r();
bytes[2] = color.g();
bytes[1] = color.b();
@@ -161,7 +161,7 @@ inline void EncodeRGBA8(const Math::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGB8(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGB8(const Common::Vec4<u8>& color, u8* bytes) {
bytes[2] = color.r();
bytes[1] = color.g();
bytes[0] = color.b();
@@ -172,7 +172,7 @@ inline void EncodeRGB8(const Math::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRG8(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRG8(const Common::Vec4<u8>& color, u8* bytes) {
bytes[1] = color.r();
bytes[0] = color.g();
}
@@ -181,7 +181,7 @@ inline void EncodeRG8(const Math::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGB565(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGB565(const Common::Vec4<u8>& color, u8* bytes) {
const u16_le data =
(Convert8To5(color.r()) << 11) | (Convert8To6(color.g()) << 5) | Convert8To5(color.b());
@@ -193,7 +193,7 @@ inline void EncodeRGB565(const Math::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGB5A1(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGB5A1(const Common::Vec4<u8>& color, u8* bytes) {
const u16_le data = (Convert8To5(color.r()) << 11) | (Convert8To5(color.g()) << 6) |
(Convert8To5(color.b()) << 1) | Convert8To1(color.a());
@@ -205,7 +205,7 @@ inline void EncodeRGB5A1(const Math::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGBA4(const Math::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGBA4(const Common::Vec4<u8>& color, u8* bytes) {
const u16 data = (Convert8To4(color.r()) << 12) | (Convert8To4(color.g()) << 8) |
(Convert8To4(color.b()) << 4) | Convert8To4(color.a());

View File

@@ -7,7 +7,7 @@
#include <cstdlib>
#include <type_traits>
namespace MathUtil {
namespace Common {
constexpr float PI = 3.14159265f;
@@ -41,4 +41,4 @@ struct Rectangle {
}
};
} // namespace MathUtil
} // namespace Common

View File

@@ -6,12 +6,12 @@
#include "common/vector_math.h"
namespace Math {
namespace Common {
template <typename T>
class Quaternion {
public:
Math::Vec3<T> xyz;
Vec3<T> xyz;
T w{};
Quaternion<decltype(-T{})> Inverse() const {
@@ -38,12 +38,12 @@ public:
};
template <typename T>
auto QuaternionRotate(const Quaternion<T>& q, const Math::Vec3<T>& v) {
auto QuaternionRotate(const Quaternion<T>& q, const Vec3<T>& v) {
return v + 2 * Cross(q.xyz, Cross(q.xyz, v) + v * q.w);
}
inline Quaternion<float> MakeQuaternion(const Math::Vec3<float>& axis, float angle) {
inline Quaternion<float> MakeQuaternion(const Vec3<float>& axis, float angle) {
return {axis * std::sin(angle / 2), std::cos(angle / 2)};
}
} // namespace Math
} // namespace Common

View File

@@ -28,8 +28,8 @@
#include <cstring>
#include "common/common_types.h"
// GCC 4.6+
#if __GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
// GCC
#ifdef __GNUC__
#if __BYTE_ORDER__ && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) && !defined(COMMON_LITTLE_ENDIAN)
#define COMMON_LITTLE_ENDIAN 1
@@ -38,7 +38,7 @@
#endif
// LLVM/clang
#elif __clang__
#elif defined(__clang__)
#if __LITTLE_ENDIAN__ && !defined(COMMON_LITTLE_ENDIAN)
#define COMMON_LITTLE_ENDIAN 1

View File

@@ -33,7 +33,7 @@
#include <cmath>
#include <type_traits>
namespace Math {
namespace Common {
template <typename T>
class Vec2;
@@ -690,4 +690,4 @@ constexpr Vec4<T> MakeVec(const T& x, const Vec3<T>& yzw) {
return MakeVec(x, yzw[0], yzw[1], yzw[2]);
}
} // namespace Math
} // namespace Common

View File

@@ -128,7 +128,7 @@ struct System::Impl {
return ResultStatus::ErrorVideoCore;
}
gpu_core = std::make_unique<Tegra::GPU>(renderer->Rasterizer());
gpu_core = std::make_unique<Tegra::GPU>(system, renderer->Rasterizer());
cpu_core_manager.Initialize(system);
is_powered_on = true;

View File

@@ -398,7 +398,8 @@ static bool ValidCryptoRevisionString(std::string_view base, size_t begin, size_
}
void KeyManager::LoadFromFile(const std::string& filename, bool is_title_keys) {
std::ifstream file(filename);
std::ifstream file;
OpenFStream(file, filename, std::ios_base::in);
if (!file.is_open())
return;

View File

@@ -47,7 +47,7 @@ std::size_t VectorVfsFile::Write(const u8* data_, std::size_t length, std::size_
if (offset + length > data.size())
data.resize(offset + length);
const auto write = std::min(length, data.size() - offset);
std::memcpy(data.data(), data_, write);
std::memcpy(data.data() + offset, data_, write);
return write;
}

View File

@@ -67,7 +67,7 @@ static bool IsWithinTouchscreen(const Layout::FramebufferLayout& layout, unsigne
framebuffer_x >= layout.screen.left && framebuffer_x < layout.screen.right);
}
std::tuple<unsigned, unsigned> EmuWindow::ClipToTouchScreen(unsigned new_x, unsigned new_y) {
std::tuple<unsigned, unsigned> EmuWindow::ClipToTouchScreen(unsigned new_x, unsigned new_y) const {
new_x = std::max(new_x, framebuffer_layout.screen.left);
new_x = std::min(new_x, framebuffer_layout.screen.right - 1);

View File

@@ -166,7 +166,7 @@ private:
/**
* Clip the provided coordinates to be inside the touchscreen area.
*/
std::tuple<unsigned, unsigned> ClipToTouchScreen(unsigned new_x, unsigned new_y);
std::tuple<unsigned, unsigned> ClipToTouchScreen(unsigned new_x, unsigned new_y) const;
};
} // namespace Core::Frontend

View File

@@ -12,12 +12,12 @@ namespace Layout {
// Finds the largest size subrectangle contained in window area that is confined to the aspect ratio
template <class T>
static MathUtil::Rectangle<T> maxRectangle(MathUtil::Rectangle<T> window_area,
float screen_aspect_ratio) {
static Common::Rectangle<T> MaxRectangle(Common::Rectangle<T> window_area,
float screen_aspect_ratio) {
float scale = std::min(static_cast<float>(window_area.GetWidth()),
window_area.GetHeight() / screen_aspect_ratio);
return MathUtil::Rectangle<T>{0, 0, static_cast<T>(std::round(scale)),
static_cast<T>(std::round(scale * screen_aspect_ratio))};
return Common::Rectangle<T>{0, 0, static_cast<T>(std::round(scale)),
static_cast<T>(std::round(scale * screen_aspect_ratio))};
}
FramebufferLayout DefaultFrameLayout(unsigned width, unsigned height) {
@@ -29,8 +29,8 @@ FramebufferLayout DefaultFrameLayout(unsigned width, unsigned height) {
const float emulation_aspect_ratio{static_cast<float>(ScreenUndocked::Height) /
ScreenUndocked::Width};
MathUtil::Rectangle<unsigned> screen_window_area{0, 0, width, height};
MathUtil::Rectangle<unsigned> screen = maxRectangle(screen_window_area, emulation_aspect_ratio);
Common::Rectangle<unsigned> screen_window_area{0, 0, width, height};
Common::Rectangle<unsigned> screen = MaxRectangle(screen_window_area, emulation_aspect_ratio);
float window_aspect_ratio = static_cast<float>(height) / width;

View File

@@ -16,7 +16,7 @@ struct FramebufferLayout {
unsigned width{ScreenUndocked::Width};
unsigned height{ScreenUndocked::Height};
MathUtil::Rectangle<unsigned> screen;
Common::Rectangle<unsigned> screen;
/**
* Returns the ration of pixel size of the screen, compared to the native size of the undocked

View File

@@ -124,7 +124,7 @@ using AnalogDevice = InputDevice<std::tuple<float, float>>;
* Orientation is determined by right-hand rule.
* Units: deg/sec
*/
using MotionDevice = InputDevice<std::tuple<Math::Vec3<float>, Math::Vec3<float>>>;
using MotionDevice = InputDevice<std::tuple<Common::Vec3<float>, Common::Vec3<float>>>;
/**
* A touch device is an input device that returns a tuple of two floats and a bool. The floats are

View File

@@ -14,6 +14,7 @@ constexpr ResultCode ERR_MAX_CONNECTIONS_REACHED{ErrorModule::Kernel, 7};
constexpr ResultCode ERR_INVALID_CAPABILITY_DESCRIPTOR{ErrorModule::Kernel, 14};
constexpr ResultCode ERR_INVALID_SIZE{ErrorModule::Kernel, 101};
constexpr ResultCode ERR_INVALID_ADDRESS{ErrorModule::Kernel, 102};
constexpr ResultCode ERR_OUT_OF_MEMORY{ErrorModule::Kernel, 104};
constexpr ResultCode ERR_HANDLE_TABLE_FULL{ErrorModule::Kernel, 105};
constexpr ResultCode ERR_INVALID_ADDRESS_STATE{ErrorModule::Kernel, 106};
constexpr ResultCode ERR_INVALID_MEMORY_PERMISSIONS{ErrorModule::Kernel, 108};

View File

@@ -14,32 +14,47 @@
namespace Kernel {
namespace {
constexpr u16 GetSlot(Handle handle) {
return handle >> 15;
return static_cast<u16>(handle >> 15);
}
constexpr u16 GetGeneration(Handle handle) {
return handle & 0x7FFF;
return static_cast<u16>(handle & 0x7FFF);
}
} // Anonymous namespace
HandleTable::HandleTable() {
next_generation = 1;
Clear();
}
HandleTable::~HandleTable() = default;
ResultCode HandleTable::SetSize(s32 handle_table_size) {
if (static_cast<u32>(handle_table_size) > MAX_COUNT) {
return ERR_OUT_OF_MEMORY;
}
// Values less than or equal to zero indicate to use the maximum allowable
// size for the handle table in the actual kernel, so we ignore the given
// value in that case, since we assume this by default unless this function
// is called.
if (handle_table_size > 0) {
table_size = static_cast<u16>(handle_table_size);
}
return RESULT_SUCCESS;
}
ResultVal<Handle> HandleTable::Create(SharedPtr<Object> obj) {
DEBUG_ASSERT(obj != nullptr);
u16 slot = next_free_slot;
if (slot >= generations.size()) {
const u16 slot = next_free_slot;
if (slot >= table_size) {
LOG_ERROR(Kernel, "Unable to allocate Handle, too many slots in use.");
return ERR_HANDLE_TABLE_FULL;
}
next_free_slot = generations[slot];
u16 generation = next_generation++;
const u16 generation = next_generation++;
// Overflow count so it fits in the 15 bits dedicated to the generation in the handle.
// Horizon OS uses zero to represent an invalid handle, so skip to 1.
@@ -64,10 +79,11 @@ ResultVal<Handle> HandleTable::Duplicate(Handle handle) {
}
ResultCode HandleTable::Close(Handle handle) {
if (!IsValid(handle))
if (!IsValid(handle)) {
return ERR_INVALID_HANDLE;
}
u16 slot = GetSlot(handle);
const u16 slot = GetSlot(handle);
objects[slot] = nullptr;
@@ -77,10 +93,10 @@ ResultCode HandleTable::Close(Handle handle) {
}
bool HandleTable::IsValid(Handle handle) const {
std::size_t slot = GetSlot(handle);
u16 generation = GetGeneration(handle);
const std::size_t slot = GetSlot(handle);
const u16 generation = GetGeneration(handle);
return slot < MAX_COUNT && objects[slot] != nullptr && generations[slot] == generation;
return slot < table_size && objects[slot] != nullptr && generations[slot] == generation;
}
SharedPtr<Object> HandleTable::GetGeneric(Handle handle) const {
@@ -97,7 +113,7 @@ SharedPtr<Object> HandleTable::GetGeneric(Handle handle) const {
}
void HandleTable::Clear() {
for (u16 i = 0; i < MAX_COUNT; ++i) {
for (u16 i = 0; i < table_size; ++i) {
generations[i] = i + 1;
objects[i] = nullptr;
}

View File

@@ -49,6 +49,20 @@ public:
HandleTable();
~HandleTable();
/**
* Sets the number of handles that may be in use at one time
* for this handle table.
*
* @param handle_table_size The desired size to limit the handle table to.
*
* @returns an error code indicating if initialization was successful.
* If initialization was not successful, then ERR_OUT_OF_MEMORY
* will be returned.
*
* @pre handle_table_size must be within the range [0, 1024]
*/
ResultCode SetSize(s32 handle_table_size);
/**
* Allocates a handle for the given object.
* @return The created Handle or one of the following errors:
@@ -103,14 +117,21 @@ private:
*/
std::array<u16, MAX_COUNT> generations;
/**
* The limited size of the handle table. This can be specified by process
* capabilities in order to restrict the overall number of handles that
* can be created in a process instance
*/
u16 table_size = static_cast<u16>(MAX_COUNT);
/**
* Global counter of the number of created handles. Stored in `generations` when a handle is
* created, and wraps around to 1 when it hits 0x8000.
*/
u16 next_generation;
u16 next_generation = 1;
/// Head of the free slots linked list.
u16 next_free_slot;
u16 next_free_slot = 0;
};
} // namespace Kernel

View File

@@ -99,7 +99,13 @@ ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) {
vm_manager.Reset(metadata.GetAddressSpaceType());
const auto& caps = metadata.GetKernelCapabilities();
return capabilities.InitializeForUserProcess(caps.data(), caps.size(), vm_manager);
const auto capability_init_result =
capabilities.InitializeForUserProcess(caps.data(), caps.size(), vm_manager);
if (capability_init_result.IsError()) {
return capability_init_result;
}
return handle_table.SetSize(capabilities.GetHandleTableSize());
}
void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) {

View File

@@ -96,7 +96,7 @@ void ProcessCapabilities::InitializeForMetadatalessProcess() {
interrupt_capabilities.set();
// Allow using the maximum possible amount of handles
handle_table_size = static_cast<u32>(HandleTable::MAX_COUNT);
handle_table_size = static_cast<s32>(HandleTable::MAX_COUNT);
// Allow all debugging capabilities.
is_debuggable = true;
@@ -337,7 +337,7 @@ ResultCode ProcessCapabilities::HandleHandleTableFlags(u32 flags) {
return ERR_RESERVED_VALUE;
}
handle_table_size = (flags >> 16) & 0x3FF;
handle_table_size = static_cast<s32>((flags >> 16) & 0x3FF);
return RESULT_SUCCESS;
}

View File

@@ -156,7 +156,7 @@ public:
}
/// Gets the number of total allowable handles for the process' handle table.
u32 GetHandleTableSize() const {
s32 GetHandleTableSize() const {
return handle_table_size;
}
@@ -252,7 +252,7 @@ private:
u64 core_mask = 0;
u64 priority_mask = 0;
u32 handle_table_size = 0;
s32 handle_table_size = 0;
u32 kernel_version = 0;
ProgramType program_type = ProgramType::SysModule;

View File

@@ -262,20 +262,20 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_Audio, "called");
u64 buffer_sz = Common::AlignUp(4 * params.mix_buffer_count, 0x40);
buffer_sz += params.unknown_c * 1024;
buffer_sz += 0x940 * (params.unknown_c + 1);
buffer_sz += params.submix_count * 1024;
buffer_sz += 0x940 * (params.submix_count + 1);
buffer_sz += 0x3F0 * params.voice_count;
buffer_sz += Common::AlignUp(8 * (params.unknown_c + 1), 0x10);
buffer_sz += Common::AlignUp(8 * (params.submix_count + 1), 0x10);
buffer_sz += Common::AlignUp(8 * params.voice_count, 0x10);
buffer_sz +=
Common::AlignUp((0x3C0 * (params.sink_count + params.unknown_c) + 4 * params.sample_count) *
(params.mix_buffer_count + 6),
0x40);
buffer_sz += Common::AlignUp(
(0x3C0 * (params.sink_count + params.submix_count) + 4 * params.sample_count) *
(params.mix_buffer_count + 6),
0x40);
if (IsFeatureSupported(AudioFeatures::Splitter, params.revision)) {
u32 count = params.unknown_c + 1;
const u32 count = params.submix_count + 1;
u64 node_count = Common::AlignUp(count, 0x40);
u64 node_state_buffer_sz =
const u64 node_state_buffer_sz =
4 * (node_count * node_count) + 0xC * node_count + 2 * (node_count / 8);
u64 edge_matrix_buffer_sz = 0;
node_count = Common::AlignUp(count * count, 0x40);
@@ -289,19 +289,19 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
buffer_sz += 0x20 * (params.effect_count + 4 * params.voice_count) + 0x50;
if (IsFeatureSupported(AudioFeatures::Splitter, params.revision)) {
buffer_sz += 0xE0 * params.unknown_2c;
buffer_sz += 0xE0 * params.num_splitter_send_channels;
buffer_sz += 0x20 * params.splitter_count;
buffer_sz += Common::AlignUp(4 * params.unknown_2c, 0x10);
buffer_sz += Common::AlignUp(4 * params.num_splitter_send_channels, 0x10);
}
buffer_sz = Common::AlignUp(buffer_sz, 0x40) + 0x170 * params.sink_count;
u64 output_sz = buffer_sz + 0x280 * params.sink_count + 0x4B0 * params.effect_count +
((params.voice_count * 256) | 0x40);
if (params.unknown_1c >= 1) {
if (params.performance_frame_count >= 1) {
output_sz = Common::AlignUp(((16 * params.sink_count + 16 * params.effect_count +
16 * params.voice_count + 16) +
0x658) *
(params.unknown_1c + 1) +
(params.performance_frame_count + 1) +
0xc0,
0x40) +
output_sz;

View File

@@ -15,7 +15,7 @@ namespace Kernel {
class SharedMemory;
}
namespace SM {
namespace Service::SM {
class ServiceManager;
}

View File

@@ -23,7 +23,7 @@ u32 nvdisp_disp0::ioctl(Ioctl command, const std::vector<u8>& input, std::vector
void nvdisp_disp0::flip(u32 buffer_handle, u32 offset, u32 format, u32 width, u32 height,
u32 stride, NVFlinger::BufferQueue::BufferTransformFlags transform,
const MathUtil::Rectangle<int>& crop_rect) {
const Common::Rectangle<int>& crop_rect) {
VAddr addr = nvmap_dev->GetObjectAddress(buffer_handle);
LOG_TRACE(Service,
"Drawing from address {:X} offset {:08X} Width {} Height {} Stride {} Format {}",

View File

@@ -25,7 +25,7 @@ public:
/// Performs a screen flip, drawing the buffer pointed to by the handle.
void flip(u32 buffer_handle, u32 offset, u32 format, u32 width, u32 height, u32 stride,
NVFlinger::BufferQueue::BufferTransformFlags transform,
const MathUtil::Rectangle<int>& crop_rect);
const Common::Rectangle<int>& crop_rect);
private:
std::shared_ptr<nvmap> nvmap_dev;

View File

@@ -63,7 +63,7 @@ const IGBPBuffer& BufferQueue::RequestBuffer(u32 slot) const {
}
void BufferQueue::QueueBuffer(u32 slot, BufferTransformFlags transform,
const MathUtil::Rectangle<int>& crop_rect) {
const Common::Rectangle<int>& crop_rect) {
auto itr = std::find_if(queue.begin(), queue.end(),
[&](const Buffer& buffer) { return buffer.slot == slot; });
ASSERT(itr != queue.end());

View File

@@ -67,14 +67,14 @@ public:
Status status = Status::Free;
IGBPBuffer igbp_buffer;
BufferTransformFlags transform;
MathUtil::Rectangle<int> crop_rect;
Common::Rectangle<int> crop_rect;
};
void SetPreallocatedBuffer(u32 slot, const IGBPBuffer& igbp_buffer);
std::optional<u32> DequeueBuffer(u32 width, u32 height);
const IGBPBuffer& RequestBuffer(u32 slot) const;
void QueueBuffer(u32 slot, BufferTransformFlags transform,
const MathUtil::Rectangle<int>& crop_rect);
const Common::Rectangle<int>& crop_rect);
std::optional<std::reference_wrapper<const Buffer>> AcquireBuffer();
void ReleaseBuffer(u32 slot);
u32 Query(QueryType type);

View File

@@ -28,9 +28,13 @@ namespace Service::NVFlinger {
constexpr std::size_t SCREEN_REFRESH_RATE = 60;
constexpr u64 frame_ticks = static_cast<u64>(Core::Timing::BASE_CLOCK_RATE / SCREEN_REFRESH_RATE);
NVFlinger::NVFlinger(Core::Timing::CoreTiming& core_timing)
: displays{{0, "Default"}, {1, "External"}, {2, "Edid"}, {3, "Internal"}, {4, "Null"}},
core_timing{core_timing} {
NVFlinger::NVFlinger(Core::Timing::CoreTiming& core_timing) : core_timing{core_timing} {
displays.emplace_back(0, "Default");
displays.emplace_back(1, "External");
displays.emplace_back(2, "Edid");
displays.emplace_back(3, "Internal");
displays.emplace_back(4, "Null");
// Schedule the screen composition events
composition_event =
core_timing.RegisterEvent("ScreenComposition", [this](u64 userdata, int cycles_late) {
@@ -55,13 +59,14 @@ std::optional<u64> NVFlinger::OpenDisplay(std::string_view name) {
// TODO(Subv): Currently we only support the Default display.
ASSERT(name == "Default");
const auto itr = std::find_if(displays.begin(), displays.end(),
[&](const VI::Display& display) { return display.name == name; });
const auto itr =
std::find_if(displays.begin(), displays.end(),
[&](const VI::Display& display) { return display.GetName() == name; });
if (itr == displays.end()) {
return {};
}
return itr->id;
return itr->GetID();
}
std::optional<u64> NVFlinger::CreateLayer(u64 display_id) {
@@ -71,13 +76,10 @@ std::optional<u64> NVFlinger::CreateLayer(u64 display_id) {
return {};
}
ASSERT_MSG(display->layers.empty(), "Only one layer is supported per display at the moment");
const u64 layer_id = next_layer_id++;
const u32 buffer_queue_id = next_buffer_queue_id++;
auto buffer_queue = std::make_shared<BufferQueue>(buffer_queue_id, layer_id);
display->layers.emplace_back(layer_id, buffer_queue);
buffer_queues.emplace_back(std::move(buffer_queue));
buffer_queues.emplace_back(buffer_queue_id, layer_id);
display->CreateLayer(layer_id, buffer_queues.back());
return layer_id;
}
@@ -88,7 +90,7 @@ std::optional<u32> NVFlinger::FindBufferQueueId(u64 display_id, u64 layer_id) co
return {};
}
return layer->buffer_queue->GetId();
return layer->GetBufferQueue().GetId();
}
Kernel::SharedPtr<Kernel::ReadableEvent> NVFlinger::FindVsyncEvent(u64 display_id) const {
@@ -98,12 +100,20 @@ Kernel::SharedPtr<Kernel::ReadableEvent> NVFlinger::FindVsyncEvent(u64 display_i
return nullptr;
}
return display->vsync_event.readable;
return display->GetVSyncEvent();
}
std::shared_ptr<BufferQueue> NVFlinger::FindBufferQueue(u32 id) const {
BufferQueue& NVFlinger::FindBufferQueue(u32 id) {
const auto itr = std::find_if(buffer_queues.begin(), buffer_queues.end(),
[&](const auto& queue) { return queue->GetId() == id; });
[id](const auto& queue) { return queue.GetId() == id; });
ASSERT(itr != buffer_queues.end());
return *itr;
}
const BufferQueue& NVFlinger::FindBufferQueue(u32 id) const {
const auto itr = std::find_if(buffer_queues.begin(), buffer_queues.end(),
[id](const auto& queue) { return queue.GetId() == id; });
ASSERT(itr != buffer_queues.end());
return *itr;
@@ -112,7 +122,7 @@ std::shared_ptr<BufferQueue> NVFlinger::FindBufferQueue(u32 id) const {
VI::Display* NVFlinger::FindDisplay(u64 display_id) {
const auto itr =
std::find_if(displays.begin(), displays.end(),
[&](const VI::Display& display) { return display.id == display_id; });
[&](const VI::Display& display) { return display.GetID() == display_id; });
if (itr == displays.end()) {
return nullptr;
@@ -124,7 +134,7 @@ VI::Display* NVFlinger::FindDisplay(u64 display_id) {
const VI::Display* NVFlinger::FindDisplay(u64 display_id) const {
const auto itr =
std::find_if(displays.begin(), displays.end(),
[&](const VI::Display& display) { return display.id == display_id; });
[&](const VI::Display& display) { return display.GetID() == display_id; });
if (itr == displays.end()) {
return nullptr;
@@ -140,14 +150,7 @@ VI::Layer* NVFlinger::FindLayer(u64 display_id, u64 layer_id) {
return nullptr;
}
const auto itr = std::find_if(display->layers.begin(), display->layers.end(),
[&](const VI::Layer& layer) { return layer.id == layer_id; });
if (itr == display->layers.end()) {
return nullptr;
}
return &*itr;
return display->FindLayer(layer_id);
}
const VI::Layer* NVFlinger::FindLayer(u64 display_id, u64 layer_id) const {
@@ -157,33 +160,24 @@ const VI::Layer* NVFlinger::FindLayer(u64 display_id, u64 layer_id) const {
return nullptr;
}
const auto itr = std::find_if(display->layers.begin(), display->layers.end(),
[&](const VI::Layer& layer) { return layer.id == layer_id; });
if (itr == display->layers.end()) {
return nullptr;
}
return &*itr;
return display->FindLayer(layer_id);
}
void NVFlinger::Compose() {
for (auto& display : displays) {
// Trigger vsync for this display at the end of drawing
SCOPE_EXIT({ display.vsync_event.writable->Signal(); });
SCOPE_EXIT({ display.SignalVSyncEvent(); });
// Don't do anything for displays without layers.
if (display.layers.empty())
if (!display.HasLayers())
continue;
// TODO(Subv): Support more than 1 layer.
ASSERT_MSG(display.layers.size() == 1, "Max 1 layer per display is supported");
VI::Layer& layer = display.layers[0];
auto& buffer_queue = layer.buffer_queue;
VI::Layer& layer = display.GetLayer(0);
auto& buffer_queue = layer.GetBufferQueue();
// Search for a queued buffer and acquire it
auto buffer = buffer_queue->AcquireBuffer();
auto buffer = buffer_queue.AcquireBuffer();
MicroProfileFlip();
@@ -208,7 +202,7 @@ void NVFlinger::Compose() {
igbp_buffer.width, igbp_buffer.height, igbp_buffer.stride,
buffer->get().transform, buffer->get().crop_rect);
buffer_queue->ReleaseBuffer(buffer->get().slot);
buffer_queue.ReleaseBuffer(buffer->get().slot);
}
}

View File

@@ -28,8 +28,8 @@ class Module;
} // namespace Service::Nvidia
namespace Service::VI {
struct Display;
struct Layer;
class Display;
class Layer;
} // namespace Service::VI
namespace Service::NVFlinger {
@@ -65,7 +65,10 @@ public:
Kernel::SharedPtr<Kernel::ReadableEvent> FindVsyncEvent(u64 display_id) const;
/// Obtains a buffer queue identified by the ID.
std::shared_ptr<BufferQueue> FindBufferQueue(u32 id) const;
BufferQueue& FindBufferQueue(u32 id);
/// Obtains a buffer queue identified by the ID.
const BufferQueue& FindBufferQueue(u32 id) const;
/// Performs a composition request to the emulated nvidia GPU and triggers the vsync events when
/// finished.
@@ -87,7 +90,7 @@ private:
std::shared_ptr<Nvidia::Module> nvdrv;
std::vector<VI::Display> displays;
std::vector<std::shared_ptr<BufferQueue>> buffer_queues;
std::vector<BufferQueue> buffer_queues;
/// Id to use for the next layer that is created, this counter is shared among all displays.
u64 next_layer_id = 1;

View File

@@ -2,8 +2,12 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <utility>
#include <fmt/format.h>
#include "common/assert.h"
#include "core/core.h"
#include "core/hle/kernel/readable_event.h"
#include "core/hle/service/vi/display/vi_display.h"
@@ -19,4 +23,49 @@ Display::Display(u64 id, std::string name) : id{id}, name{std::move(name)} {
Display::~Display() = default;
Layer& Display::GetLayer(std::size_t index) {
return layers.at(index);
}
const Layer& Display::GetLayer(std::size_t index) const {
return layers.at(index);
}
Kernel::SharedPtr<Kernel::ReadableEvent> Display::GetVSyncEvent() const {
return vsync_event.readable;
}
void Display::SignalVSyncEvent() {
vsync_event.writable->Signal();
}
void Display::CreateLayer(u64 id, NVFlinger::BufferQueue& buffer_queue) {
// TODO(Subv): Support more than 1 layer.
ASSERT_MSG(layers.empty(), "Only one layer is supported per display at the moment");
layers.emplace_back(id, buffer_queue);
}
Layer* Display::FindLayer(u64 id) {
const auto itr = std::find_if(layers.begin(), layers.end(),
[id](const VI::Layer& layer) { return layer.GetID() == id; });
if (itr == layers.end()) {
return nullptr;
}
return &*itr;
}
const Layer* Display::FindLayer(u64 id) const {
const auto itr = std::find_if(layers.begin(), layers.end(),
[id](const VI::Layer& layer) { return layer.GetID() == id; });
if (itr == layers.end()) {
return nullptr;
}
return &*itr;
}
} // namespace Service::VI

View File

@@ -10,14 +10,84 @@
#include "common/common_types.h"
#include "core/hle/kernel/writable_event.h"
namespace Service::NVFlinger {
class BufferQueue;
}
namespace Service::VI {
struct Layer;
class Layer;
struct Display {
/// Represents a single display type
class Display {
public:
/// Constructs a display with a given unique ID and name.
///
/// @param id The unique ID for this display.
/// @param name The name for this display.
///
Display(u64 id, std::string name);
~Display();
Display(const Display&) = delete;
Display& operator=(const Display&) = delete;
Display(Display&&) = default;
Display& operator=(Display&&) = default;
/// Gets the unique ID assigned to this display.
u64 GetID() const {
return id;
}
/// Gets the name of this display
const std::string& GetName() const {
return name;
}
/// Whether or not this display has any layers added to it.
bool HasLayers() const {
return !layers.empty();
}
/// Gets a layer for this display based off an index.
Layer& GetLayer(std::size_t index);
/// Gets a layer for this display based off an index.
const Layer& GetLayer(std::size_t index) const;
/// Gets the readable vsync event.
Kernel::SharedPtr<Kernel::ReadableEvent> GetVSyncEvent() const;
/// Signals the internal vsync event.
void SignalVSyncEvent();
/// Creates and adds a layer to this display with the given ID.
///
/// @param id The ID to assign to the created layer.
/// @param buffer_queue The buffer queue for the layer instance to use.
///
void CreateLayer(u64 id, NVFlinger::BufferQueue& buffer_queue);
/// Attempts to find a layer with the given ID.
///
/// @param id The layer ID.
///
/// @returns If found, the Layer instance with the given ID.
/// If not found, then nullptr is returned.
///
Layer* FindLayer(u64 id);
/// Attempts to find a layer with the given ID.
///
/// @param id The layer ID.
///
/// @returns If found, the Layer instance with the given ID.
/// If not found, then nullptr is returned.
///
const Layer* FindLayer(u64 id) const;
private:
u64 id;
std::string name;

View File

@@ -6,8 +6,7 @@
namespace Service::VI {
Layer::Layer(u64 id, std::shared_ptr<NVFlinger::BufferQueue> queue)
: id{id}, buffer_queue{std::move(queue)} {}
Layer::Layer(u64 id, NVFlinger::BufferQueue& queue) : id{id}, buffer_queue{queue} {}
Layer::~Layer() = default;

View File

@@ -4,8 +4,6 @@
#pragma once
#include <memory>
#include "common/common_types.h"
namespace Service::NVFlinger {
@@ -14,12 +12,41 @@ class BufferQueue;
namespace Service::VI {
struct Layer {
Layer(u64 id, std::shared_ptr<NVFlinger::BufferQueue> queue);
/// Represents a single display layer.
class Layer {
public:
/// Constructs a layer with a given ID and buffer queue.
///
/// @param id The ID to assign to this layer.
/// @param queue The buffer queue for this layer to use.
///
Layer(u64 id, NVFlinger::BufferQueue& queue);
~Layer();
Layer(const Layer&) = delete;
Layer& operator=(const Layer&) = delete;
Layer(Layer&&) = default;
Layer& operator=(Layer&&) = delete;
/// Gets the ID for this layer.
u64 GetID() const {
return id;
}
/// Gets a reference to the buffer queue this layer is using.
NVFlinger::BufferQueue& GetBufferQueue() {
return buffer_queue;
}
/// Gets a const reference to the buffer queue this layer is using.
const NVFlinger::BufferQueue& GetBufferQueue() const {
return buffer_queue;
}
private:
u64 id;
std::shared_ptr<NVFlinger::BufferQueue> buffer_queue;
NVFlinger::BufferQueue& buffer_queue;
};
} // namespace Service::VI

View File

@@ -420,7 +420,7 @@ public:
u32_le fence_is_valid;
std::array<Fence, 2> fences;
MathUtil::Rectangle<int> GetCropRect() const {
Common::Rectangle<int> GetCropRect() const {
return {crop_left, crop_top, crop_right, crop_bottom};
}
};
@@ -525,7 +525,7 @@ private:
LOG_DEBUG(Service_VI, "called. id=0x{:08X} transaction={:X}, flags=0x{:08X}", id,
static_cast<u32>(transaction), flags);
auto buffer_queue = nv_flinger->FindBufferQueue(id);
auto& buffer_queue = nv_flinger->FindBufferQueue(id);
if (transaction == TransactionId::Connect) {
IGBPConnectRequestParcel request{ctx.ReadBuffer()};
@@ -538,7 +538,7 @@ private:
} else if (transaction == TransactionId::SetPreallocatedBuffer) {
IGBPSetPreallocatedBufferRequestParcel request{ctx.ReadBuffer()};
buffer_queue->SetPreallocatedBuffer(request.data.slot, request.buffer);
buffer_queue.SetPreallocatedBuffer(request.data.slot, request.buffer);
IGBPSetPreallocatedBufferResponseParcel response{};
ctx.WriteBuffer(response.Serialize());
@@ -546,7 +546,7 @@ private:
IGBPDequeueBufferRequestParcel request{ctx.ReadBuffer()};
const u32 width{request.data.width};
const u32 height{request.data.height};
std::optional<u32> slot = buffer_queue->DequeueBuffer(width, height);
std::optional<u32> slot = buffer_queue.DequeueBuffer(width, height);
if (slot) {
// Buffer is available
@@ -559,8 +559,8 @@ private:
[=](Kernel::SharedPtr<Kernel::Thread> thread, Kernel::HLERequestContext& ctx,
Kernel::ThreadWakeupReason reason) {
// Repeat TransactParcel DequeueBuffer when a buffer is available
auto buffer_queue = nv_flinger->FindBufferQueue(id);
std::optional<u32> slot = buffer_queue->DequeueBuffer(width, height);
auto& buffer_queue = nv_flinger->FindBufferQueue(id);
std::optional<u32> slot = buffer_queue.DequeueBuffer(width, height);
ASSERT_MSG(slot != std::nullopt, "Could not dequeue buffer.");
IGBPDequeueBufferResponseParcel response{*slot};
@@ -568,28 +568,28 @@ private:
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(RESULT_SUCCESS);
},
buffer_queue->GetWritableBufferWaitEvent());
buffer_queue.GetWritableBufferWaitEvent());
}
} else if (transaction == TransactionId::RequestBuffer) {
IGBPRequestBufferRequestParcel request{ctx.ReadBuffer()};
auto& buffer = buffer_queue->RequestBuffer(request.slot);
auto& buffer = buffer_queue.RequestBuffer(request.slot);
IGBPRequestBufferResponseParcel response{buffer};
ctx.WriteBuffer(response.Serialize());
} else if (transaction == TransactionId::QueueBuffer) {
IGBPQueueBufferRequestParcel request{ctx.ReadBuffer()};
buffer_queue->QueueBuffer(request.data.slot, request.data.transform,
request.data.GetCropRect());
buffer_queue.QueueBuffer(request.data.slot, request.data.transform,
request.data.GetCropRect());
IGBPQueueBufferResponseParcel response{1280, 720};
ctx.WriteBuffer(response.Serialize());
} else if (transaction == TransactionId::Query) {
IGBPQueryRequestParcel request{ctx.ReadBuffer()};
u32 value =
buffer_queue->Query(static_cast<NVFlinger::BufferQueue::QueryType>(request.type));
const u32 value =
buffer_queue.Query(static_cast<NVFlinger::BufferQueue::QueryType>(request.type));
IGBPQueryResponseParcel response{value};
ctx.WriteBuffer(response.Serialize());
@@ -629,12 +629,12 @@ private:
LOG_WARNING(Service_VI, "(STUBBED) called id={}, unknown={:08X}", id, unknown);
const auto buffer_queue = nv_flinger->FindBufferQueue(id);
const auto& buffer_queue = nv_flinger->FindBufferQueue(id);
// TODO(Subv): Find out what this actually is.
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(RESULT_SUCCESS);
rb.PushCopyObjects(buffer_queue->GetBufferWaitEvent());
rb.PushCopyObjects(buffer_queue.GetBufferWaitEvent());
}
std::shared_ptr<NVFlinger::NVFlinger> nv_flinger;
@@ -752,6 +752,7 @@ public:
{1102, nullptr, "GetDisplayResolution"},
{2010, &IManagerDisplayService::CreateManagedLayer, "CreateManagedLayer"},
{2011, nullptr, "DestroyManagedLayer"},
{2012, nullptr, "CreateStrayLayer"},
{2050, nullptr, "CreateIndirectLayer"},
{2051, nullptr, "DestroyIndirectLayer"},
{2052, nullptr, "CreateIndirectProducerEndPoint"},

View File

@@ -71,15 +71,20 @@ static void MapPages(PageTable& page_table, VAddr base, u64 size, u8* memory, Pa
FlushMode::FlushAndInvalidate);
VAddr end = base + size;
while (base != end) {
ASSERT_MSG(base < page_table.pointers.size(), "out of range mapping at {:016X}", base);
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
base + page_table.pointers.size());
page_table.attributes[base] = type;
page_table.pointers[base] = memory;
std::fill(page_table.attributes.begin() + base, page_table.attributes.begin() + end, type);
base += 1;
if (memory != nullptr)
if (memory == nullptr) {
std::fill(page_table.pointers.begin() + base, page_table.pointers.begin() + end, memory);
} else {
while (base != end) {
page_table.pointers[base] = memory;
base += 1;
memory += PAGE_SIZE;
}
}
}

View File

@@ -32,12 +32,12 @@ public:
}
void BeginTilt(int x, int y) {
mouse_origin = Math::MakeVec(x, y);
mouse_origin = Common::MakeVec(x, y);
is_tilting = true;
}
void Tilt(int x, int y) {
auto mouse_move = Math::MakeVec(x, y) - mouse_origin;
auto mouse_move = Common::MakeVec(x, y) - mouse_origin;
if (is_tilting) {
std::lock_guard<std::mutex> guard(tilt_mutex);
if (mouse_move.x == 0 && mouse_move.y == 0) {
@@ -45,7 +45,7 @@ public:
} else {
tilt_direction = mouse_move.Cast<float>();
tilt_angle =
std::clamp(tilt_direction.Normalize() * sensitivity, 0.0f, MathUtil::PI * 0.5f);
std::clamp(tilt_direction.Normalize() * sensitivity, 0.0f, Common::PI * 0.5f);
}
}
}
@@ -56,7 +56,7 @@ public:
is_tilting = false;
}
std::tuple<Math::Vec3<float>, Math::Vec3<float>> GetStatus() {
std::tuple<Common::Vec3<float>, Common::Vec3<float>> GetStatus() {
std::lock_guard<std::mutex> guard(status_mutex);
return status;
}
@@ -66,17 +66,17 @@ private:
const std::chrono::steady_clock::duration update_duration;
const float sensitivity;
Math::Vec2<int> mouse_origin;
Common::Vec2<int> mouse_origin;
std::mutex tilt_mutex;
Math::Vec2<float> tilt_direction;
Common::Vec2<float> tilt_direction;
float tilt_angle = 0;
bool is_tilting = false;
Common::Event shutdown_event;
std::tuple<Math::Vec3<float>, Math::Vec3<float>> status;
std::tuple<Common::Vec3<float>, Common::Vec3<float>> status;
std::mutex status_mutex;
// Note: always keep the thread declaration at the end so that other objects are initialized
@@ -85,8 +85,8 @@ private:
void MotionEmuThread() {
auto update_time = std::chrono::steady_clock::now();
Math::Quaternion<float> q = MakeQuaternion(Math::Vec3<float>(), 0);
Math::Quaternion<float> old_q;
Common::Quaternion<float> q = Common::MakeQuaternion(Common::Vec3<float>(), 0);
Common::Quaternion<float> old_q;
while (!shutdown_event.WaitUntil(update_time)) {
update_time += update_duration;
@@ -96,18 +96,18 @@ private:
std::lock_guard<std::mutex> guard(tilt_mutex);
// Find the quaternion describing current 3DS tilting
q = MakeQuaternion(Math::MakeVec(-tilt_direction.y, 0.0f, tilt_direction.x),
tilt_angle);
q = Common::MakeQuaternion(
Common::MakeVec(-tilt_direction.y, 0.0f, tilt_direction.x), tilt_angle);
}
auto inv_q = q.Inverse();
// Set the gravity vector in world space
auto gravity = Math::MakeVec(0.0f, -1.0f, 0.0f);
auto gravity = Common::MakeVec(0.0f, -1.0f, 0.0f);
// Find the angular rate vector in world space
auto angular_rate = ((q - old_q) * inv_q).xyz * 2;
angular_rate *= 1000 / update_millisecond / MathUtil::PI * 180;
angular_rate *= 1000 / update_millisecond / Common::PI * 180;
// Transform the two vectors from world space to 3DS space
gravity = QuaternionRotate(inv_q, gravity);
@@ -131,7 +131,7 @@ public:
device = std::make_shared<MotionEmuDevice>(update_millisecond, sensitivity);
}
std::tuple<Math::Vec3<float>, Math::Vec3<float>> GetStatus() const override {
std::tuple<Common::Vec3<float>, Common::Vec3<float>> GetStatus() const override {
return device->GetStatus();
}

View File

@@ -106,8 +106,14 @@ if (ENABLE_VULKAN)
renderer_vulkan/declarations.h
renderer_vulkan/vk_device.cpp
renderer_vulkan/vk_device.h
renderer_vulkan/vk_memory_manager.cpp
renderer_vulkan/vk_memory_manager.h
renderer_vulkan/vk_resource_manager.cpp
renderer_vulkan/vk_resource_manager.h)
renderer_vulkan/vk_resource_manager.h
renderer_vulkan/vk_scheduler.cpp
renderer_vulkan/vk_scheduler.h
renderer_vulkan/vk_stream_buffer.cpp
renderer_vulkan/vk_stream_buffer.h)
target_include_directories(video_core PRIVATE ../../externals/Vulkan-Headers/include)
target_compile_definitions(video_core PRIVATE HAS_VULKAN)

View File

@@ -33,18 +33,36 @@ void DmaPusher::DispatchCalls() {
}
bool DmaPusher::Step() {
if (dma_get != dma_put) {
// Push buffer non-empty, read a word
const auto address = gpu.MemoryManager().GpuToCpuAddress(dma_get);
ASSERT_MSG(address, "Invalid GPU address");
if (!ib_enable || dma_pushbuffer.empty()) {
// pushbuffer empty and IB empty or nonexistent - nothing to do
return false;
}
const CommandHeader command_header{Memory::Read32(*address)};
const CommandList& command_list{dma_pushbuffer.front()};
const CommandListHeader& command_list_header{command_list[dma_pushbuffer_subindex++]};
GPUVAddr dma_get = command_list_header.addr;
GPUVAddr dma_put = dma_get + command_list_header.size * sizeof(u32);
bool non_main = command_list_header.is_non_main;
dma_get += sizeof(u32);
if (dma_pushbuffer_subindex >= command_list.size()) {
// We've gone through the current list, remove it from the queue
dma_pushbuffer.pop();
dma_pushbuffer_subindex = 0;
}
if (!non_main) {
dma_mget = dma_get;
}
if (command_list_header.size == 0) {
return true;
}
// Push buffer non-empty, read a word
const auto address = gpu.MemoryManager().GpuToCpuAddress(dma_get);
ASSERT_MSG(address, "Invalid GPU address");
command_headers.resize(command_list_header.size);
Memory::ReadBlock(*address, command_headers.data(), command_list_header.size * sizeof(u32));
for (const CommandHeader& command_header : command_headers) {
// now, see if we're in the middle of a command
if (dma_state.length_pending) {
@@ -91,22 +109,11 @@ bool DmaPusher::Step() {
break;
}
}
} else if (ib_enable && !dma_pushbuffer.empty()) {
// Current pushbuffer empty, but we have more IB entries to read
const CommandList& command_list{dma_pushbuffer.front()};
const CommandListHeader& command_list_header{command_list[dma_pushbuffer_subindex++]};
dma_get = command_list_header.addr;
dma_put = dma_get + command_list_header.size * sizeof(u32);
non_main = command_list_header.is_non_main;
}
if (dma_pushbuffer_subindex >= command_list.size()) {
// We've gone through the current list, remove it from the queue
dma_pushbuffer.pop();
dma_pushbuffer_subindex = 0;
}
} else {
// Otherwise, pushbuffer empty and IB empty or nonexistent - nothing to do
return {};
if (!non_main) {
// TODO (degasus): This is dead code, as dma_mget is never read.
dma_mget = dma_put;
}
return true;

View File

@@ -75,6 +75,8 @@ private:
GPU& gpu;
std::vector<CommandHeader> command_headers; ///< Buffer for list of commands fetched at once
std::queue<CommandList> dma_pushbuffer; ///< Queue of command lists to be processed
std::size_t dma_pushbuffer_subindex{}; ///< Index within a command list within the pushbuffer
@@ -89,11 +91,8 @@ private:
DmaState dma_state{};
bool dma_increment_once{};
GPUVAddr dma_put{}; ///< pushbuffer current end address
GPUVAddr dma_get{}; ///< pushbuffer current read address
GPUVAddr dma_mget{}; ///< main pushbuffer last read address
bool ib_enable{true}; ///< IB mode enabled
bool non_main{}; ///< non-main pushbuffer active
};
} // namespace Tegra

View File

@@ -44,10 +44,10 @@ void Fermi2D::HandleSurfaceCopy() {
const u32 src_blit_y2{
static_cast<u32>((regs.blit_src_y + (regs.blit_dst_height * regs.blit_dv_dy)) >> 32)};
const MathUtil::Rectangle<u32> src_rect{src_blit_x1, src_blit_y1, src_blit_x2, src_blit_y2};
const MathUtil::Rectangle<u32> dst_rect{regs.blit_dst_x, regs.blit_dst_y,
regs.blit_dst_x + regs.blit_dst_width,
regs.blit_dst_y + regs.blit_dst_height};
const Common::Rectangle<u32> src_rect{src_blit_x1, src_blit_y1, src_blit_x2, src_blit_y2};
const Common::Rectangle<u32> dst_rect{regs.blit_dst_x, regs.blit_dst_y,
regs.blit_dst_x + regs.blit_dst_width,
regs.blit_dst_y + regs.blit_dst_height};
if (!rasterizer.AccelerateSurfaceCopy(regs.src, regs.dst, src_rect, dst_rect)) {
UNIMPLEMENTED();

View File

@@ -2,6 +2,7 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/memory.h"
@@ -11,9 +12,9 @@
namespace Tegra::Engines {
KeplerMemory::KeplerMemory(VideoCore::RasterizerInterface& rasterizer,
KeplerMemory::KeplerMemory(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager)
: memory_manager(memory_manager), rasterizer{rasterizer} {}
: system{system}, memory_manager(memory_manager), rasterizer{rasterizer} {}
KeplerMemory::~KeplerMemory() = default;
@@ -50,7 +51,7 @@ void KeplerMemory::ProcessData(u32 data) {
rasterizer.InvalidateRegion(*dest_address, sizeof(u32));
Memory::Write32(*dest_address, data);
Core::System::GetInstance().GPU().Maxwell3D().dirty_flags.OnMemoryWrite();
system.GPU().Maxwell3D().dirty_flags.OnMemoryWrite();
state.write_offset++;
}

View File

@@ -5,13 +5,16 @@
#pragma once
#include <array>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
namespace Core {
class System;
}
namespace VideoCore {
class RasterizerInterface;
}
@@ -23,7 +26,8 @@ namespace Tegra::Engines {
class KeplerMemory final {
public:
KeplerMemory(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager);
KeplerMemory(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager);
~KeplerMemory();
/// Write the value to the register identified by method.
@@ -76,6 +80,7 @@ public:
} state{};
private:
Core::System& system;
MemoryManager& memory_manager;
VideoCore::RasterizerInterface& rasterizer;

View File

@@ -19,8 +19,10 @@ namespace Tegra::Engines {
/// First register id that is actually a Macro call.
constexpr u32 MacroRegistersStart = 0xE00;
Maxwell3D::Maxwell3D(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager)
: memory_manager(memory_manager), rasterizer{rasterizer}, macro_interpreter(*this) {
Maxwell3D::Maxwell3D(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager)
: memory_manager(memory_manager), system{system}, rasterizer{rasterizer},
macro_interpreter(*this) {
InitializeRegisterDefaults();
}
@@ -103,23 +105,25 @@ void Maxwell3D::CallMacroMethod(u32 method, std::vector<u32> parameters) {
}
void Maxwell3D::CallMethod(const GPU::MethodCall& method_call) {
auto debug_context = Core::System::GetInstance().GetGPUDebugContext();
auto debug_context = system.GetGPUDebugContext();
const u32 method = method_call.method;
// It is an error to write to a register other than the current macro's ARG register before it
// has finished execution.
if (executing_macro != 0) {
ASSERT(method_call.method == executing_macro + 1);
ASSERT(method == executing_macro + 1);
}
// Methods after 0xE00 are special, they're actually triggers for some microcode that was
// uploaded to the GPU during initialization.
if (method_call.method >= MacroRegistersStart) {
if (method >= MacroRegistersStart) {
// We're trying to execute a macro
if (executing_macro == 0) {
// A macro call must begin by writing the macro method's register, not its argument.
ASSERT_MSG((method_call.method % 2) == 0,
ASSERT_MSG((method % 2) == 0,
"Can't start macro execution by writing to the ARGS register");
executing_macro = method_call.method;
executing_macro = method;
}
macro_params.push_back(method_call.argument);
@@ -131,66 +135,62 @@ void Maxwell3D::CallMethod(const GPU::MethodCall& method_call) {
return;
}
ASSERT_MSG(method_call.method < Regs::NUM_REGS,
ASSERT_MSG(method < Regs::NUM_REGS,
"Invalid Maxwell3D register, increase the size of the Regs structure");
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::MaxwellCommandLoaded, nullptr);
}
if (regs.reg_array[method_call.method] != method_call.argument) {
regs.reg_array[method_call.method] = method_call.argument;
if (regs.reg_array[method] != method_call.argument) {
regs.reg_array[method] = method_call.argument;
// Color buffers
constexpr u32 first_rt_reg = MAXWELL3D_REG_INDEX(rt);
constexpr u32 registers_per_rt = sizeof(regs.rt[0]) / sizeof(u32);
if (method_call.method >= first_rt_reg &&
method_call.method < first_rt_reg + registers_per_rt * Regs::NumRenderTargets) {
const std::size_t rt_index = (method_call.method - first_rt_reg) / registers_per_rt;
dirty_flags.color_buffer |= 1u << static_cast<u32>(rt_index);
if (method >= first_rt_reg &&
method < first_rt_reg + registers_per_rt * Regs::NumRenderTargets) {
const std::size_t rt_index = (method - first_rt_reg) / registers_per_rt;
dirty_flags.color_buffer.set(rt_index);
}
// Zeta buffer
constexpr u32 registers_in_zeta = sizeof(regs.zeta) / sizeof(u32);
if (method_call.method == MAXWELL3D_REG_INDEX(zeta_enable) ||
method_call.method == MAXWELL3D_REG_INDEX(zeta_width) ||
method_call.method == MAXWELL3D_REG_INDEX(zeta_height) ||
(method_call.method >= MAXWELL3D_REG_INDEX(zeta) &&
method_call.method < MAXWELL3D_REG_INDEX(zeta) + registers_in_zeta)) {
if (method == MAXWELL3D_REG_INDEX(zeta_enable) ||
method == MAXWELL3D_REG_INDEX(zeta_width) ||
method == MAXWELL3D_REG_INDEX(zeta_height) ||
(method >= MAXWELL3D_REG_INDEX(zeta) &&
method < MAXWELL3D_REG_INDEX(zeta) + registers_in_zeta)) {
dirty_flags.zeta_buffer = true;
}
// Shader
constexpr u32 shader_registers_count =
sizeof(regs.shader_config[0]) * Regs::MaxShaderProgram / sizeof(u32);
if (method_call.method >= MAXWELL3D_REG_INDEX(shader_config[0]) &&
method_call.method < MAXWELL3D_REG_INDEX(shader_config[0]) + shader_registers_count) {
if (method >= MAXWELL3D_REG_INDEX(shader_config[0]) &&
method < MAXWELL3D_REG_INDEX(shader_config[0]) + shader_registers_count) {
dirty_flags.shaders = true;
}
// Vertex format
if (method_call.method >= MAXWELL3D_REG_INDEX(vertex_attrib_format) &&
method_call.method <
MAXWELL3D_REG_INDEX(vertex_attrib_format) + regs.vertex_attrib_format.size()) {
if (method >= MAXWELL3D_REG_INDEX(vertex_attrib_format) &&
method < MAXWELL3D_REG_INDEX(vertex_attrib_format) + regs.vertex_attrib_format.size()) {
dirty_flags.vertex_attrib_format = true;
}
// Vertex buffer
if (method_call.method >= MAXWELL3D_REG_INDEX(vertex_array) &&
method_call.method < MAXWELL3D_REG_INDEX(vertex_array) + 4 * 32) {
dirty_flags.vertex_array |=
1u << ((method_call.method - MAXWELL3D_REG_INDEX(vertex_array)) >> 2);
} else if (method_call.method >= MAXWELL3D_REG_INDEX(vertex_array_limit) &&
method_call.method < MAXWELL3D_REG_INDEX(vertex_array_limit) + 2 * 32) {
dirty_flags.vertex_array |=
1u << ((method_call.method - MAXWELL3D_REG_INDEX(vertex_array_limit)) >> 1);
} else if (method_call.method >= MAXWELL3D_REG_INDEX(instanced_arrays) &&
method_call.method < MAXWELL3D_REG_INDEX(instanced_arrays) + 32) {
dirty_flags.vertex_array |=
1u << (method_call.method - MAXWELL3D_REG_INDEX(instanced_arrays));
if (method >= MAXWELL3D_REG_INDEX(vertex_array) &&
method < MAXWELL3D_REG_INDEX(vertex_array) + 4 * 32) {
dirty_flags.vertex_array.set((method - MAXWELL3D_REG_INDEX(vertex_array)) >> 2);
} else if (method >= MAXWELL3D_REG_INDEX(vertex_array_limit) &&
method < MAXWELL3D_REG_INDEX(vertex_array_limit) + 2 * 32) {
dirty_flags.vertex_array.set((method - MAXWELL3D_REG_INDEX(vertex_array_limit)) >> 1);
} else if (method >= MAXWELL3D_REG_INDEX(instanced_arrays) &&
method < MAXWELL3D_REG_INDEX(instanced_arrays) + 32) {
dirty_flags.vertex_array.set(method - MAXWELL3D_REG_INDEX(instanced_arrays));
}
}
switch (method_call.method) {
switch (method) {
case MAXWELL3D_REG_INDEX(macros.data): {
ProcessMacroUpload(method_call.argument);
break;
@@ -317,7 +317,7 @@ void Maxwell3D::ProcessQueryGet() {
LongQueryResult query_result{};
query_result.value = result;
// TODO(Subv): Generate a real GPU timestamp and write it here instead of CoreTiming
query_result.timestamp = Core::System::GetInstance().CoreTiming().GetTicks();
query_result.timestamp = system.CoreTiming().GetTicks();
Memory::WriteBlock(*address, &query_result, sizeof(query_result));
}
dirty_flags.OnMemoryWrite();
@@ -334,7 +334,7 @@ void Maxwell3D::DrawArrays() {
regs.vertex_buffer.count);
ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?");
auto debug_context = Core::System::GetInstance().GetGPUDebugContext();
auto debug_context = system.GetGPUDebugContext();
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::IncomingPrimitiveBatch, nullptr);

View File

@@ -5,8 +5,10 @@
#pragma once
#include <array>
#include <bitset>
#include <unordered_map>
#include <vector>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_funcs.h"
@@ -17,6 +19,10 @@
#include "video_core/memory_manager.h"
#include "video_core/textures/texture.h"
namespace Core {
class System;
}
namespace VideoCore {
class RasterizerInterface;
}
@@ -28,7 +34,8 @@ namespace Tegra::Engines {
class Maxwell3D final {
public:
explicit Maxwell3D(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager);
explicit Maxwell3D(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager);
~Maxwell3D() = default;
/// Register structure of the Maxwell3D engine.
@@ -498,7 +505,7 @@ public:
f32 translate_z;
INSERT_PADDING_WORDS(2);
MathUtil::Rectangle<s32> GetRect() const {
Common::Rectangle<s32> GetRect() const {
return {
GetX(), // left
GetY() + GetHeight(), // top
@@ -1089,19 +1096,18 @@ public:
MemoryManager& memory_manager;
struct DirtyFlags {
u8 color_buffer = 0xFF;
bool zeta_buffer = true;
bool shaders = true;
std::bitset<8> color_buffer{0xFF};
std::bitset<32> vertex_array{0xFFFFFFFF};
bool vertex_attrib_format = true;
u32 vertex_array = 0xFFFFFFFF;
bool zeta_buffer = true;
bool shaders = true;
void OnMemoryWrite() {
color_buffer = 0xFF;
zeta_buffer = true;
shaders = true;
vertex_array = 0xFFFFFFFF;
color_buffer.set();
vertex_array.set();
}
};
@@ -1131,6 +1137,8 @@ public:
private:
void InitializeRegisterDefaults();
Core::System& system;
VideoCore::RasterizerInterface& rasterizer;
/// Start offsets of each macro in macro_memory

View File

@@ -2,6 +2,7 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "core/core.h"
#include "core/memory.h"
#include "video_core/engines/maxwell_3d.h"
@@ -11,8 +12,9 @@
namespace Tegra::Engines {
MaxwellDMA::MaxwellDMA(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager)
: memory_manager(memory_manager), rasterizer{rasterizer} {}
MaxwellDMA::MaxwellDMA(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager)
: memory_manager(memory_manager), system{system}, rasterizer{rasterizer} {}
void MaxwellDMA::CallMethod(const GPU::MethodCall& method_call) {
ASSERT_MSG(method_call.method < Regs::NUM_REGS,
@@ -59,7 +61,7 @@ void MaxwellDMA::HandleCopy() {
}
// All copies here update the main memory, so mark all rasterizer states as invalid.
Core::System::GetInstance().GPU().Maxwell3D().dirty_flags.OnMemoryWrite();
system.GPU().Maxwell3D().dirty_flags.OnMemoryWrite();
if (regs.exec.is_dst_linear && regs.exec.is_src_linear) {
// When the enable_2d bit is disabled, the copy is performed as if we were copying a 1D

View File

@@ -5,13 +5,16 @@
#pragma once
#include <array>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
namespace Core {
class System;
}
namespace VideoCore {
class RasterizerInterface;
}
@@ -20,7 +23,8 @@ namespace Tegra::Engines {
class MaxwellDMA final {
public:
explicit MaxwellDMA(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager);
explicit MaxwellDMA(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager);
~MaxwellDMA() = default;
/// Write the value to the register identified by method.
@@ -137,6 +141,8 @@ public:
MemoryManager& memory_manager;
private:
Core::System& system;
VideoCore::RasterizerInterface& rasterizer;
/// Performs the copy from the source buffer to the destination buffer as configured in the

View File

@@ -376,9 +376,9 @@ enum class R2pMode : u64 {
};
enum class IpaInterpMode : u64 {
Linear = 0,
Perspective = 1,
Flat = 2,
Pass = 0,
Multiply = 1,
Constant = 2,
Sc = 3,
};

View File

@@ -16,6 +16,13 @@ enum class OutputTopology : u32 {
TriangleStrip = 7,
};
enum class AttributeUse : u8 {
Unused = 0,
Constant = 1,
Perspective = 2,
ScreenLinear = 3,
};
// Documentation in:
// http://download.nvidia.com/open-gpu-doc/Shader-Program-Header/1/Shader-Program-Header.html#ImapTexture
struct Header {
@@ -84,9 +91,15 @@ struct Header {
} vtg;
struct {
INSERT_PADDING_BYTES(3); // ImapSystemValuesA
INSERT_PADDING_BYTES(1); // ImapSystemValuesB
INSERT_PADDING_BYTES(32); // ImapGenericVector[32]
INSERT_PADDING_BYTES(3); // ImapSystemValuesA
INSERT_PADDING_BYTES(1); // ImapSystemValuesB
union {
BitField<0, 2, AttributeUse> x;
BitField<2, 2, AttributeUse> y;
BitField<4, 2, AttributeUse> w;
BitField<6, 2, AttributeUse> z;
u8 raw;
} imap_generic_vector[32];
INSERT_PADDING_BYTES(2); // ImapColor
INSERT_PADDING_BYTES(2); // ImapSystemValuesC
INSERT_PADDING_BYTES(10); // ImapFixedFncTexture[10]
@@ -103,6 +116,28 @@ struct Header {
const u32 bit = render_target * 4 + component;
return omap.target & (1 << bit);
}
AttributeUse GetAttributeIndexUse(u32 attribute, u32 index) const {
return static_cast<AttributeUse>(
(imap_generic_vector[attribute].raw >> (index * 2)) & 0x03);
}
AttributeUse GetAttributeUse(u32 attribute) const {
AttributeUse result = AttributeUse::Unused;
for (u32 i = 0; i < 4; i++) {
const auto index = GetAttributeIndexUse(attribute, i);
if (index == AttributeUse::Unused) {
continue;
}
if (result == AttributeUse::Unused || result == index) {
result = index;
continue;
}
LOG_CRITICAL(HW_GPU, "Generic Attribute Conflict in Interpolation Mode");
if (index == AttributeUse::Perspective) {
result = index;
}
}
return result;
}
} ps;
};

View File

@@ -28,14 +28,14 @@ u32 FramebufferConfig::BytesPerPixel(PixelFormat format) {
UNREACHABLE();
}
GPU::GPU(VideoCore::RasterizerInterface& rasterizer) {
GPU::GPU(Core::System& system, VideoCore::RasterizerInterface& rasterizer) {
memory_manager = std::make_unique<Tegra::MemoryManager>();
dma_pusher = std::make_unique<Tegra::DmaPusher>(*this);
maxwell_3d = std::make_unique<Engines::Maxwell3D>(rasterizer, *memory_manager);
maxwell_3d = std::make_unique<Engines::Maxwell3D>(system, rasterizer, *memory_manager);
fermi_2d = std::make_unique<Engines::Fermi2D>(rasterizer, *memory_manager);
kepler_compute = std::make_unique<Engines::KeplerCompute>(*memory_manager);
maxwell_dma = std::make_unique<Engines::MaxwellDMA>(rasterizer, *memory_manager);
kepler_memory = std::make_unique<Engines::KeplerMemory>(rasterizer, *memory_manager);
maxwell_dma = std::make_unique<Engines::MaxwellDMA>(system, rasterizer, *memory_manager);
kepler_memory = std::make_unique<Engines::KeplerMemory>(system, rasterizer, *memory_manager);
}
GPU::~GPU() = default;

View File

@@ -6,12 +6,15 @@
#include <array>
#include <memory>
#include <vector>
#include "common/common_types.h"
#include "core/hle/service/nvflinger/buffer_queue.h"
#include "video_core/dma_pusher.h"
#include "video_core/memory_manager.h"
namespace Core {
class System;
}
namespace VideoCore {
class RasterizerInterface;
}
@@ -97,7 +100,7 @@ struct FramebufferConfig {
using TransformFlags = Service::NVFlinger::BufferQueue::BufferTransformFlags;
TransformFlags transform_flags;
MathUtil::Rectangle<int> crop_rect;
Common::Rectangle<int> crop_rect;
};
namespace Engines {
@@ -118,7 +121,7 @@ enum class EngineID {
class GPU final {
public:
explicit GPU(VideoCore::RasterizerInterface& rasterizer);
explicit GPU(Core::System& system, VideoCore::RasterizerInterface& rasterizer);
~GPU();
struct MethodCall {

View File

@@ -129,6 +129,15 @@ protected:
return ++modified_ticks;
}
/// Flushes the specified object, updating appropriate cache state as needed
void FlushObject(const T& object) {
if (!object->IsDirty()) {
return;
}
object->Flush();
object->MarkAsModified(false, *this);
}
private:
/// Returns a list of cached objects from the specified memory region, ordered by access time
std::vector<T> GetSortedObjectsFromRegion(VAddr addr, u64 size) {
@@ -154,15 +163,6 @@ private:
return objects;
}
/// Flushes the specified object, updating appropriate cache state as needed
void FlushObject(const T& object) {
if (!object->IsDirty()) {
return;
}
object->Flush();
object->MarkAsModified(false, *this);
}
using ObjectSet = std::set<T>;
using ObjectCache = std::unordered_map<VAddr, T>;
using IntervalCache = boost::icl::interval_map<VAddr, ObjectSet>;

View File

@@ -47,8 +47,8 @@ public:
/// Attempt to use a faster method to perform a surface copy
virtual bool AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const MathUtil::Rectangle<u32>& src_rect,
const MathUtil::Rectangle<u32>& dst_rect) {
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect) {
return false;
}

View File

@@ -102,8 +102,8 @@ struct FramebufferCacheKey {
RasterizerOpenGL::RasterizerOpenGL(Core::Frontend::EmuWindow& window, Core::System& system,
ScreenInfo& info)
: res_cache{*this}, shader_cache{*this, system}, emu_window{window}, screen_info{info},
buffer_cache(*this, STREAM_BUFFER_SIZE), global_cache{*this} {
: res_cache{*this}, shader_cache{*this, system}, global_cache{*this}, emu_window{window},
screen_info{info}, buffer_cache(*this, STREAM_BUFFER_SIZE) {
// Create sampler objects
for (std::size_t i = 0; i < texture_samplers.size(); ++i) {
texture_samplers[i].Create();
@@ -200,7 +200,7 @@ GLuint RasterizerOpenGL::SetupVertexFormat() {
}
// Rebinding the VAO invalidates the vertex buffer bindings.
gpu.dirty_flags.vertex_array = 0xFFFFFFFF;
gpu.dirty_flags.vertex_array.set();
state.draw.vertex_array = vao_entry.handle;
return vao_entry.handle;
@@ -210,14 +210,14 @@ void RasterizerOpenGL::SetupVertexBuffer(GLuint vao) {
auto& gpu = Core::System::GetInstance().GPU().Maxwell3D();
const auto& regs = gpu.regs;
if (!gpu.dirty_flags.vertex_array)
if (gpu.dirty_flags.vertex_array.none())
return;
MICROPROFILE_SCOPE(OpenGL_VB);
// Upload all guest vertex arrays sequentially to our buffer
for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) {
if (~gpu.dirty_flags.vertex_array & (1u << index))
if (!gpu.dirty_flags.vertex_array[index])
continue;
const auto& vertex_array = regs.vertex_array[index];
@@ -244,7 +244,7 @@ void RasterizerOpenGL::SetupVertexBuffer(GLuint vao) {
}
}
gpu.dirty_flags.vertex_array = 0;
gpu.dirty_flags.vertex_array.reset();
}
DrawParameters RasterizerOpenGL::SetupDraw() {
@@ -488,13 +488,13 @@ std::pair<bool, bool> RasterizerOpenGL::ConfigureFramebuffers(
OpenGLState& current_state, bool using_color_fb, bool using_depth_fb, bool preserve_contents,
std::optional<std::size_t> single_color_target) {
MICROPROFILE_SCOPE(OpenGL_Framebuffer);
const auto& gpu = Core::System::GetInstance().GPU().Maxwell3D();
auto& gpu = Core::System::GetInstance().GPU().Maxwell3D();
const auto& regs = gpu.regs;
const FramebufferConfigState fb_config_state{using_color_fb, using_depth_fb, preserve_contents,
single_color_target};
if (fb_config_state == current_framebuffer_config_state && gpu.dirty_flags.color_buffer == 0 &&
!gpu.dirty_flags.zeta_buffer) {
if (fb_config_state == current_framebuffer_config_state &&
gpu.dirty_flags.color_buffer.none() && !gpu.dirty_flags.zeta_buffer) {
// Only skip if the previous ConfigureFramebuffers call was from the same kind (multiple or
// single color targets). This is done because the guest registers may not change but the
// host framebuffer may contain different attachments
@@ -721,10 +721,10 @@ void RasterizerOpenGL::DrawArrays() {
// Add space for at least 18 constant buffers
buffer_size += Maxwell::MaxConstBuffers * (MaxConstbufferSize + uniform_buffer_alignment);
bool invalidate = buffer_cache.Map(buffer_size);
const bool invalidate = buffer_cache.Map(buffer_size);
if (invalidate) {
// As all cached buffers are invalidated, we need to recheck their state.
gpu.dirty_flags.vertex_array = 0xFFFFFFFF;
gpu.dirty_flags.vertex_array.set();
}
const GLuint vao = SetupVertexFormat();
@@ -738,19 +738,11 @@ void RasterizerOpenGL::DrawArrays() {
shader_program_manager->ApplyTo(state);
state.Apply();
// Execute draw call
res_cache.SignalPreDrawCall();
params.DispatchDraw();
// Disable scissor test
state.viewports[0].scissor.enabled = false;
res_cache.SignalPostDrawCall();
accelerate_draw = AccelDraw::Disabled;
// Unbind textures for potential future use as framebuffer attachments
for (auto& texture_unit : state.texture_units) {
texture_unit.Unbind();
}
state.Apply();
}
void RasterizerOpenGL::FlushAll() {}
@@ -779,8 +771,8 @@ void RasterizerOpenGL::FlushAndInvalidateRegion(VAddr addr, u64 size) {
bool RasterizerOpenGL::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const MathUtil::Rectangle<u32>& src_rect,
const MathUtil::Rectangle<u32>& dst_rect) {
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect) {
MICROPROFILE_SCOPE(OpenGL_Blits);
res_cache.FermiCopySurface(src, dst, src_rect, dst_rect);
return true;
@@ -1034,7 +1026,7 @@ void RasterizerOpenGL::SyncViewport(OpenGLState& current_state) {
for (std::size_t i = 0; i < viewport_count; i++) {
auto& viewport = current_state.viewports[i];
const auto& src = regs.viewports[i];
const MathUtil::Rectangle<s32> viewport_rect{regs.viewport_transform[i].GetRect()};
const Common::Rectangle<s32> viewport_rect{regs.viewport_transform[i].GetRect()};
viewport.x = viewport_rect.left;
viewport.y = viewport_rect.bottom;
viewport.width = viewport_rect.GetWidth();

View File

@@ -62,8 +62,8 @@ public:
void FlushAndInvalidateRegion(VAddr addr, u64 size) override;
bool AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const MathUtil::Rectangle<u32>& src_rect,
const MathUtil::Rectangle<u32>& dst_rect) override;
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect) override;
bool AccelerateDisplay(const Tegra::FramebufferConfig& config, VAddr framebuffer_addr,
u32 pixel_stride) override;
bool AccelerateDrawBatch(bool is_indexed) override;

View File

@@ -3,6 +3,7 @@
// Refer to the license.txt file included.
#include <algorithm>
#include <optional>
#include <glad/glad.h>
#include "common/alignment.h"
@@ -399,7 +400,7 @@ static const FormatTuple& GetFormatTuple(PixelFormat pixel_format, ComponentType
return format;
}
MathUtil::Rectangle<u32> SurfaceParams::GetRect(u32 mip_level) const {
Common::Rectangle<u32> SurfaceParams::GetRect(u32 mip_level) const {
u32 actual_height{std::max(1U, unaligned_height >> mip_level)};
if (IsPixelFormatASTC(pixel_format)) {
// ASTC formats must stop at the ATSC block size boundary
@@ -423,7 +424,7 @@ void SwizzleFunc(const MortonSwizzleMode& mode, const SurfaceParams& params,
for (u32 i = 0; i < params.depth; i++) {
MortonSwizzle(mode, params.pixel_format, params.MipWidth(mip_level),
params.MipBlockHeight(mip_level), params.MipHeight(mip_level),
params.MipBlockDepth(mip_level), params.tile_width_spacing, 1,
params.MipBlockDepth(mip_level), 1, params.tile_width_spacing,
gl_buffer.data() + offset_gl, gl_size, params.addr + offset);
offset += layer_size;
offset_gl += gl_size;
@@ -549,6 +550,8 @@ CachedSurface::CachedSurface(const SurfaceParams& params)
// alternatives. This signals a bug on those functions.
const auto width = static_cast<GLsizei>(params.MipWidth(0));
const auto height = static_cast<GLsizei>(params.MipHeight(0));
memory_size = params.MemorySize();
reinterpreted = false;
const auto& format_tuple = GetFormatTuple(params.pixel_format, params.component_type);
gl_internal_format = format_tuple.internal_format;
@@ -962,30 +965,31 @@ Surface RasterizerCacheOpenGL::GetColorBufferSurface(std::size_t index, bool pre
auto& gpu{Core::System::GetInstance().GPU().Maxwell3D()};
const auto& regs{gpu.regs};
if ((gpu.dirty_flags.color_buffer & (1u << static_cast<u32>(index))) == 0) {
if (!gpu.dirty_flags.color_buffer[index]) {
return last_color_buffers[index];
}
gpu.dirty_flags.color_buffer &= ~(1u << static_cast<u32>(index));
gpu.dirty_flags.color_buffer.reset(index);
ASSERT(index < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets);
if (index >= regs.rt_control.count) {
return last_color_buffers[index] = {};
return current_color_buffers[index] = {};
}
if (regs.rt[index].Address() == 0 || regs.rt[index].format == Tegra::RenderTargetFormat::NONE) {
return last_color_buffers[index] = {};
return current_color_buffers[index] = {};
}
const SurfaceParams color_params{SurfaceParams::CreateForFramebuffer(index)};
return last_color_buffers[index] = GetSurface(color_params, preserve_contents);
return current_color_buffers[index] = GetSurface(color_params, preserve_contents);
}
void RasterizerCacheOpenGL::LoadSurface(const Surface& surface) {
surface->LoadGLBuffer();
surface->UploadGLTexture(read_framebuffer.handle, draw_framebuffer.handle);
surface->MarkAsModified(false, *this);
surface->MarkForReload(false);
}
Surface RasterizerCacheOpenGL::GetSurface(const SurfaceParams& params, bool preserve_contents) {
@@ -997,18 +1001,23 @@ Surface RasterizerCacheOpenGL::GetSurface(const SurfaceParams& params, bool pres
Surface surface{TryGet(params.addr)};
if (surface) {
if (surface->GetSurfaceParams().IsCompatibleSurface(params)) {
// Use the cached surface as-is
// Use the cached surface as-is unless it's not synced with memory
if (surface->MustReload())
LoadSurface(surface);
return surface;
} else if (preserve_contents) {
// If surface parameters changed and we care about keeping the previous data, recreate
// the surface from the old one
Surface new_surface{RecreateSurface(surface, params)};
Unregister(surface);
UnregisterSurface(surface);
Register(new_surface);
if (new_surface->IsUploaded()) {
RegisterReinterpretSurface(new_surface);
}
return new_surface;
} else {
// Delete the old surface before creating a new one to prevent collisions.
Unregister(surface);
UnregisterSurface(surface);
}
}
@@ -1062,8 +1071,8 @@ void RasterizerCacheOpenGL::FastLayeredCopySurface(const Surface& src_surface,
}
static bool BlitSurface(const Surface& src_surface, const Surface& dst_surface,
const MathUtil::Rectangle<u32>& src_rect,
const MathUtil::Rectangle<u32>& dst_rect, GLuint read_fb_handle,
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect, GLuint read_fb_handle,
GLuint draw_fb_handle, GLenum src_attachment = 0, GLenum dst_attachment = 0,
std::size_t cubemap_face = 0) {
@@ -1193,7 +1202,7 @@ static bool BlitSurface(const Surface& src_surface, const Surface& dst_surface,
void RasterizerCacheOpenGL::FermiCopySurface(
const Tegra::Engines::Fermi2D::Regs::Surface& src_config,
const Tegra::Engines::Fermi2D::Regs::Surface& dst_config,
const MathUtil::Rectangle<u32>& src_rect, const MathUtil::Rectangle<u32>& dst_rect) {
const Common::Rectangle<u32>& src_rect, const Common::Rectangle<u32>& dst_rect) {
const auto& src_params = SurfaceParams::CreateForFermiCopySurface(src_config);
const auto& dst_params = SurfaceParams::CreateForFermiCopySurface(dst_config);
@@ -1257,7 +1266,11 @@ Surface RasterizerCacheOpenGL::RecreateSurface(const Surface& old_surface,
case SurfaceTarget::TextureCubemap:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubeArray:
FastLayeredCopySurface(old_surface, new_surface);
if (old_params.pixel_format == new_params.pixel_format)
FastLayeredCopySurface(old_surface, new_surface);
else {
AccurateCopySurface(old_surface, new_surface);
}
break;
default:
LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}",
@@ -1286,4 +1299,107 @@ Surface RasterizerCacheOpenGL::TryGetReservedSurface(const SurfaceParams& params
return {};
}
static std::optional<u32> TryFindBestMipMap(std::size_t memory, const SurfaceParams params,
u32 height) {
for (u32 i = 0; i < params.max_mip_level; i++) {
if (memory == params.GetMipmapSingleSize(i) && params.MipHeight(i) == height) {
return {i};
}
}
return {};
}
static std::optional<u32> TryFindBestLayer(VAddr addr, const SurfaceParams params, u32 mipmap) {
const std::size_t size = params.LayerMemorySize();
VAddr start = params.addr + params.GetMipmapLevelOffset(mipmap);
for (u32 i = 0; i < params.depth; i++) {
if (start == addr) {
return {i};
}
start += size;
}
return {};
}
static bool LayerFitReinterpretSurface(RasterizerCacheOpenGL& cache, const Surface render_surface,
const Surface blitted_surface) {
const auto& dst_params = blitted_surface->GetSurfaceParams();
const auto& src_params = render_surface->GetSurfaceParams();
const std::size_t src_memory_size = src_params.size_in_bytes;
const std::optional<u32> level =
TryFindBestMipMap(src_memory_size, dst_params, src_params.height);
if (level.has_value()) {
if (src_params.width == dst_params.MipWidthGobAligned(*level) &&
src_params.height == dst_params.MipHeight(*level) &&
src_params.block_height >= dst_params.MipBlockHeight(*level)) {
const std::optional<u32> slot =
TryFindBestLayer(render_surface->GetAddr(), dst_params, *level);
if (slot.has_value()) {
glCopyImageSubData(render_surface->Texture().handle,
SurfaceTargetToGL(src_params.target), 0, 0, 0, 0,
blitted_surface->Texture().handle,
SurfaceTargetToGL(dst_params.target), *level, 0, 0, *slot,
dst_params.MipWidth(*level), dst_params.MipHeight(*level), 1);
blitted_surface->MarkAsModified(true, cache);
return true;
}
}
}
return false;
}
static bool IsReinterpretInvalid(const Surface render_surface, const Surface blitted_surface) {
const VAddr bound1 = blitted_surface->GetAddr() + blitted_surface->GetMemorySize();
const VAddr bound2 = render_surface->GetAddr() + render_surface->GetMemorySize();
if (bound2 > bound1)
return true;
const auto& dst_params = blitted_surface->GetSurfaceParams();
const auto& src_params = render_surface->GetSurfaceParams();
return (dst_params.component_type != src_params.component_type);
}
static bool IsReinterpretInvalidSecond(const Surface render_surface,
const Surface blitted_surface) {
const auto& dst_params = blitted_surface->GetSurfaceParams();
const auto& src_params = render_surface->GetSurfaceParams();
return (dst_params.height > src_params.height && dst_params.width > src_params.width);
}
bool RasterizerCacheOpenGL::PartialReinterpretSurface(Surface triggering_surface,
Surface intersect) {
if (IsReinterpretInvalid(triggering_surface, intersect)) {
UnregisterSurface(intersect);
return false;
}
if (!LayerFitReinterpretSurface(*this, triggering_surface, intersect)) {
if (IsReinterpretInvalidSecond(triggering_surface, intersect)) {
UnregisterSurface(intersect);
return false;
}
FlushObject(intersect);
FlushObject(triggering_surface);
intersect->MarkForReload(true);
}
return true;
}
void RasterizerCacheOpenGL::SignalPreDrawCall() {
if (texception && GLAD_GL_ARB_texture_barrier) {
glTextureBarrier();
}
texception = false;
}
void RasterizerCacheOpenGL::SignalPostDrawCall() {
for (u32 i = 0; i < Maxwell::NumRenderTargets; i++) {
if (current_color_buffers[i] != nullptr) {
Surface intersect = CollideOnReinterpretedSurface(current_color_buffers[i]->GetAddr());
if (intersect != nullptr) {
PartialReinterpretSurface(current_color_buffers[i], intersect);
texception = true;
}
}
}
}
} // namespace OpenGL

View File

@@ -28,12 +28,13 @@ namespace OpenGL {
class CachedSurface;
using Surface = std::shared_ptr<CachedSurface>;
using SurfaceSurfaceRect_Tuple = std::tuple<Surface, Surface, MathUtil::Rectangle<u32>>;
using SurfaceSurfaceRect_Tuple = std::tuple<Surface, Surface, Common::Rectangle<u32>>;
using SurfaceTarget = VideoCore::Surface::SurfaceTarget;
using SurfaceType = VideoCore::Surface::SurfaceType;
using PixelFormat = VideoCore::Surface::PixelFormat;
using ComponentType = VideoCore::Surface::ComponentType;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
struct SurfaceParams {
enum class SurfaceClass {
@@ -71,7 +72,7 @@ struct SurfaceParams {
}
/// Returns the rectangle corresponding to this surface
MathUtil::Rectangle<u32> GetRect(u32 mip_level = 0) const;
Common::Rectangle<u32> GetRect(u32 mip_level = 0) const;
/// Returns the total size of this surface in bytes, adjusted for compression
std::size_t SizeInBytesRaw(bool ignore_tiled = false) const {
@@ -140,10 +141,18 @@ struct SurfaceParams {
return offset;
}
std::size_t GetMipmapSingleSize(u32 mip_level) const {
return InnerMipmapMemorySize(mip_level, false, is_layered);
}
u32 MipWidth(u32 mip_level) const {
return std::max(1U, width >> mip_level);
}
u32 MipWidthGobAligned(u32 mip_level) const {
return Common::AlignUp(std::max(1U, width >> mip_level), 64U * 8U / GetFormatBpp());
}
u32 MipHeight(u32 mip_level) const {
return std::max(1U, height >> mip_level);
}
@@ -346,6 +355,10 @@ public:
return cached_size_in_bytes;
}
std::size_t GetMemorySize() const {
return memory_size;
}
void Flush() override {
FlushGLBuffer();
}
@@ -395,6 +408,26 @@ public:
Tegra::Texture::SwizzleSource swizzle_z,
Tegra::Texture::SwizzleSource swizzle_w);
void MarkReinterpreted() {
reinterpreted = true;
}
bool IsReinterpreted() const {
return reinterpreted;
}
void MarkForReload(bool reload) {
must_reload = reload;
}
bool MustReload() const {
return must_reload;
}
bool IsUploaded() const {
return params.identity == SurfaceParams::SurfaceClass::Uploaded;
}
private:
void UploadGLMipmapTexture(u32 mip_map, GLuint read_fb_handle, GLuint draw_fb_handle);
@@ -408,6 +441,9 @@ private:
GLenum gl_internal_format{};
std::size_t cached_size_in_bytes{};
std::array<GLenum, 4> swizzle{GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA};
std::size_t memory_size;
bool reinterpreted = false;
bool must_reload = false;
};
class RasterizerCacheOpenGL final : public RasterizerCache<Surface> {
@@ -430,8 +466,11 @@ public:
/// Copies the contents of one surface to another
void FermiCopySurface(const Tegra::Engines::Fermi2D::Regs::Surface& src_config,
const Tegra::Engines::Fermi2D::Regs::Surface& dst_config,
const MathUtil::Rectangle<u32>& src_rect,
const MathUtil::Rectangle<u32>& dst_rect);
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect);
void SignalPreDrawCall();
void SignalPostDrawCall();
private:
void LoadSurface(const Surface& surface);
@@ -449,6 +488,10 @@ private:
/// Tries to get a reserved surface for the specified parameters
Surface TryGetReservedSurface(const SurfaceParams& params);
// Partialy reinterpret a surface based on a triggering_surface that collides with it.
// returns true if the reinterpret was successful, false in case it was not.
bool PartialReinterpretSurface(Surface triggering_surface, Surface intersect);
/// Performs a slow but accurate surface copy, flushing to RAM and reinterpreting the data
void AccurateCopySurface(const Surface& src_surface, const Surface& dst_surface);
void FastLayeredCopySurface(const Surface& src_surface, const Surface& dst_surface);
@@ -465,12 +508,50 @@ private:
OGLFramebuffer read_framebuffer;
OGLFramebuffer draw_framebuffer;
bool texception = false;
/// Use a Pixel Buffer Object to download the previous texture and then upload it to the new one
/// using the new format.
OGLBuffer copy_pbo;
std::array<Surface, Tegra::Engines::Maxwell3D::Regs::NumRenderTargets> last_color_buffers;
std::array<Surface, Maxwell::NumRenderTargets> last_color_buffers;
std::array<Surface, Maxwell::NumRenderTargets> current_color_buffers;
Surface last_depth_buffer;
using SurfaceIntervalCache = boost::icl::interval_map<VAddr, Surface>;
using SurfaceInterval = typename SurfaceIntervalCache::interval_type;
static auto GetReinterpretInterval(const Surface& object) {
return SurfaceInterval::right_open(object->GetAddr() + 1,
object->GetAddr() + object->GetMemorySize() - 1);
}
// Reinterpreted surfaces are very fragil as the game may keep rendering into them.
SurfaceIntervalCache reinterpreted_surfaces;
void RegisterReinterpretSurface(Surface reinterpret_surface) {
auto interval = GetReinterpretInterval(reinterpret_surface);
reinterpreted_surfaces.insert({interval, reinterpret_surface});
reinterpret_surface->MarkReinterpreted();
}
Surface CollideOnReinterpretedSurface(VAddr addr) const {
const SurfaceInterval interval{addr};
for (auto& pair :
boost::make_iterator_range(reinterpreted_surfaces.equal_range(interval))) {
return pair.second;
}
return nullptr;
}
/// Unregisters an object from the cache
void UnregisterSurface(const Surface& object) {
if (object->IsReinterpreted()) {
auto interval = GetReinterpretInterval(object);
reinterpreted_surfaces.erase(interval);
}
Unregister(object);
}
};
} // namespace OpenGL

View File

@@ -20,6 +20,7 @@
namespace OpenGL::GLShader {
using Tegra::Shader::Attribute;
using Tegra::Shader::AttributeUse;
using Tegra::Shader::Header;
using Tegra::Shader::IpaInterpMode;
using Tegra::Shader::IpaMode;
@@ -288,34 +289,22 @@ private:
code.AddNewLine();
}
std::string GetInputFlags(const IpaMode& input_mode) {
const IpaSampleMode sample_mode = input_mode.sampling_mode;
const IpaInterpMode interp_mode = input_mode.interpolation_mode;
std::string GetInputFlags(AttributeUse attribute) {
std::string out;
switch (interp_mode) {
case IpaInterpMode::Flat:
switch (attribute) {
case AttributeUse::Constant:
out += "flat ";
break;
case IpaInterpMode::Linear:
case AttributeUse::ScreenLinear:
out += "noperspective ";
break;
case IpaInterpMode::Perspective:
case AttributeUse::Perspective:
// Default, Smooth
break;
default:
UNIMPLEMENTED_MSG("Unhandled IPA interp mode: {}", static_cast<u32>(interp_mode));
}
switch (sample_mode) {
case IpaSampleMode::Centroid:
// It can be implemented with the "centroid " keyword in GLSL
UNIMPLEMENTED_MSG("Unimplemented IPA sampler mode centroid");
break;
case IpaSampleMode::Default:
// Default, n/a
break;
default:
UNIMPLEMENTED_MSG("Unimplemented IPA sampler mode: {}", static_cast<u32>(sample_mode));
LOG_CRITICAL(HW_GPU, "Unused attribute being fetched");
UNREACHABLE();
}
return out;
}
@@ -324,16 +313,11 @@ private:
const auto& attributes = ir.GetInputAttributes();
for (const auto element : attributes) {
const Attribute::Index index = element.first;
const IpaMode& input_mode = *element.second.begin();
if (index < Attribute::Index::Attribute_0 || index > Attribute::Index::Attribute_31) {
// Skip when it's not a generic attribute
continue;
}
ASSERT(element.second.size() > 0);
UNIMPLEMENTED_IF_MSG(element.second.size() > 1,
"Multiple input flag modes are not supported in GLSL");
// TODO(bunnei): Use proper number of elements for these
u32 idx = static_cast<u32>(index) - static_cast<u32>(Attribute::Index::Attribute_0);
if (stage != ShaderStage::Vertex) {
@@ -345,8 +329,14 @@ private:
if (stage == ShaderStage::Geometry) {
attr = "gs_" + attr + "[]";
}
code.AddLine("layout (location = " + std::to_string(idx) + ") " +
GetInputFlags(input_mode) + "in vec4 " + attr + ';');
std::string suffix;
if (stage == ShaderStage::Fragment) {
const auto input_mode =
header.ps.GetAttributeUse(idx - GENERIC_VARYING_START_LOCATION);
suffix = GetInputFlags(input_mode);
}
code.AddLine("layout (location = " + std::to_string(idx) + ") " + suffix + "in vec4 " +
attr + ';');
}
if (!attributes.empty())
code.AddNewLine();
@@ -1584,4 +1574,4 @@ ProgramResult Decompile(const ShaderIR& ir, Maxwell::ShaderStage stage, const st
return {decompiler.GetResult(), decompiler.GetShaderEntries()};
}
} // namespace OpenGL::GLShader
} // namespace OpenGL::GLShader

View File

@@ -2,8 +2,6 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstring>
#include <fmt/format.h>
#include <lz4.h>

View File

@@ -124,7 +124,7 @@ layout (location = 5) out vec4 FragColor5;
layout (location = 6) out vec4 FragColor6;
layout (location = 7) out vec4 FragColor7;
layout (location = 0) in vec4 position;
layout (location = 0) in noperspective vec4 position;
layout (std140, binding = EMULATION_UBO_BINDING) uniform fs_config {
vec4 viewport_flip;
@@ -172,4 +172,4 @@ void main() {
return {out, program.second};
}
} // namespace OpenGL::GLShader
} // namespace OpenGL::GLShader

View File

@@ -11,7 +11,9 @@
namespace OpenGL {
OpenGLState OpenGLState::cur_state;
bool OpenGLState::s_rgb_used;
OpenGLState::OpenGLState() {
// These all match default OpenGL values
geometry_shaders.enabled = false;
@@ -112,7 +114,6 @@ void OpenGLState::ApplyDefaultState() {
}
void OpenGLState::ApplySRgb() const {
// sRGB
if (framebuffer_srgb.enabled != cur_state.framebuffer_srgb.enabled) {
if (framebuffer_srgb.enabled) {
// Track if sRGB is used
@@ -125,23 +126,20 @@ void OpenGLState::ApplySRgb() const {
}
void OpenGLState::ApplyCulling() const {
// Culling
const bool cull_changed = cull.enabled != cur_state.cull.enabled;
if (cull_changed) {
if (cull.enabled != cur_state.cull.enabled) {
if (cull.enabled) {
glEnable(GL_CULL_FACE);
} else {
glDisable(GL_CULL_FACE);
}
}
if (cull.enabled) {
if (cull_changed || cull.mode != cur_state.cull.mode) {
glCullFace(cull.mode);
}
if (cull_changed || cull.front_face != cur_state.cull.front_face) {
glFrontFace(cull.front_face);
}
if (cull.mode != cur_state.cull.mode) {
glCullFace(cull.mode);
}
if (cull.front_face != cur_state.cull.front_face) {
glFrontFace(cull.front_face);
}
}
@@ -172,72 +170,63 @@ void OpenGLState::ApplyColorMask() const {
}
void OpenGLState::ApplyDepth() const {
// Depth test
const bool depth_test_changed = depth.test_enabled != cur_state.depth.test_enabled;
if (depth_test_changed) {
if (depth.test_enabled != cur_state.depth.test_enabled) {
if (depth.test_enabled) {
glEnable(GL_DEPTH_TEST);
} else {
glDisable(GL_DEPTH_TEST);
}
}
if (depth.test_enabled &&
(depth_test_changed || depth.test_func != cur_state.depth.test_func)) {
if (depth.test_func != cur_state.depth.test_func) {
glDepthFunc(depth.test_func);
}
// Depth mask
if (depth.write_mask != cur_state.depth.write_mask) {
glDepthMask(depth.write_mask);
}
}
void OpenGLState::ApplyPrimitiveRestart() const {
const bool primitive_restart_changed =
primitive_restart.enabled != cur_state.primitive_restart.enabled;
if (primitive_restart_changed) {
if (primitive_restart.enabled != cur_state.primitive_restart.enabled) {
if (primitive_restart.enabled) {
glEnable(GL_PRIMITIVE_RESTART);
} else {
glDisable(GL_PRIMITIVE_RESTART);
}
}
if (primitive_restart_changed ||
(primitive_restart.enabled &&
primitive_restart.index != cur_state.primitive_restart.index)) {
if (primitive_restart.index != cur_state.primitive_restart.index) {
glPrimitiveRestartIndex(primitive_restart.index);
}
}
void OpenGLState::ApplyStencilTest() const {
const bool stencil_test_changed = stencil.test_enabled != cur_state.stencil.test_enabled;
if (stencil_test_changed) {
if (stencil.test_enabled != cur_state.stencil.test_enabled) {
if (stencil.test_enabled) {
glEnable(GL_STENCIL_TEST);
} else {
glDisable(GL_STENCIL_TEST);
}
}
if (stencil.test_enabled) {
auto config_stencil = [stencil_test_changed](GLenum face, const auto& config,
const auto& prev_config) {
if (stencil_test_changed || config.test_func != prev_config.test_func ||
config.test_ref != prev_config.test_ref ||
config.test_mask != prev_config.test_mask) {
glStencilFuncSeparate(face, config.test_func, config.test_ref, config.test_mask);
}
if (stencil_test_changed || config.action_depth_fail != prev_config.action_depth_fail ||
config.action_depth_pass != prev_config.action_depth_pass ||
config.action_stencil_fail != prev_config.action_stencil_fail) {
glStencilOpSeparate(face, config.action_stencil_fail, config.action_depth_fail,
config.action_depth_pass);
}
if (config.write_mask != prev_config.write_mask) {
glStencilMaskSeparate(face, config.write_mask);
}
};
config_stencil(GL_FRONT, stencil.front, cur_state.stencil.front);
config_stencil(GL_BACK, stencil.back, cur_state.stencil.back);
}
const auto ConfigStencil = [](GLenum face, const auto& config, const auto& prev_config) {
if (config.test_func != prev_config.test_func || config.test_ref != prev_config.test_ref ||
config.test_mask != prev_config.test_mask) {
glStencilFuncSeparate(face, config.test_func, config.test_ref, config.test_mask);
}
if (config.action_depth_fail != prev_config.action_depth_fail ||
config.action_depth_pass != prev_config.action_depth_pass ||
config.action_stencil_fail != prev_config.action_stencil_fail) {
glStencilOpSeparate(face, config.action_stencil_fail, config.action_depth_fail,
config.action_depth_pass);
}
if (config.write_mask != prev_config.write_mask) {
glStencilMaskSeparate(face, config.write_mask);
}
};
ConfigStencil(GL_FRONT, stencil.front, cur_state.stencil.front);
ConfigStencil(GL_BACK, stencil.back, cur_state.stencil.back);
}
// Viewport does not affects glClearBuffer so emulate viewport using scissor test
void OpenGLState::EmulateViewportWithScissor() {
@@ -278,19 +267,18 @@ void OpenGLState::ApplyViewport() const {
updated.depth_range_far != current.depth_range_far) {
glDepthRangeIndexed(i, updated.depth_range_near, updated.depth_range_far);
}
const bool scissor_changed = updated.scissor.enabled != current.scissor.enabled;
if (scissor_changed) {
if (updated.scissor.enabled != current.scissor.enabled) {
if (updated.scissor.enabled) {
glEnablei(GL_SCISSOR_TEST, i);
} else {
glDisablei(GL_SCISSOR_TEST, i);
}
}
if (updated.scissor.enabled &&
(scissor_changed || updated.scissor.x != current.scissor.x ||
updated.scissor.y != current.scissor.y ||
updated.scissor.width != current.scissor.width ||
updated.scissor.height != current.scissor.height)) {
if (updated.scissor.x != current.scissor.x || updated.scissor.y != current.scissor.y ||
updated.scissor.width != current.scissor.width ||
updated.scissor.height != current.scissor.height) {
glScissorIndexed(i, updated.scissor.x, updated.scissor.y, updated.scissor.width,
updated.scissor.height);
}
@@ -302,22 +290,23 @@ void OpenGLState::ApplyViewport() const {
updated.height != current.height) {
glViewport(updated.x, updated.y, updated.width, updated.height);
}
if (updated.depth_range_near != current.depth_range_near ||
updated.depth_range_far != current.depth_range_far) {
glDepthRange(updated.depth_range_near, updated.depth_range_far);
}
const bool scissor_changed = updated.scissor.enabled != current.scissor.enabled;
if (scissor_changed) {
if (updated.scissor.enabled != current.scissor.enabled) {
if (updated.scissor.enabled) {
glEnable(GL_SCISSOR_TEST);
} else {
glDisable(GL_SCISSOR_TEST);
}
}
if (updated.scissor.enabled && (scissor_changed || updated.scissor.x != current.scissor.x ||
updated.scissor.y != current.scissor.y ||
updated.scissor.width != current.scissor.width ||
updated.scissor.height != current.scissor.height)) {
if (updated.scissor.x != current.scissor.x || updated.scissor.y != current.scissor.y ||
updated.scissor.width != current.scissor.width ||
updated.scissor.height != current.scissor.height) {
glScissor(updated.scissor.x, updated.scissor.y, updated.scissor.width,
updated.scissor.height);
}
@@ -327,8 +316,7 @@ void OpenGLState::ApplyViewport() const {
void OpenGLState::ApplyGlobalBlending() const {
const Blend& current = cur_state.blend[0];
const Blend& updated = blend[0];
const bool blend_changed = updated.enabled != current.enabled;
if (blend_changed) {
if (updated.enabled != current.enabled) {
if (updated.enabled) {
glEnable(GL_BLEND);
} else {
@@ -338,15 +326,14 @@ void OpenGLState::ApplyGlobalBlending() const {
if (!updated.enabled) {
return;
}
if (blend_changed || updated.src_rgb_func != current.src_rgb_func ||
if (updated.src_rgb_func != current.src_rgb_func ||
updated.dst_rgb_func != current.dst_rgb_func || updated.src_a_func != current.src_a_func ||
updated.dst_a_func != current.dst_a_func) {
glBlendFuncSeparate(updated.src_rgb_func, updated.dst_rgb_func, updated.src_a_func,
updated.dst_a_func);
}
if (blend_changed || updated.rgb_equation != current.rgb_equation ||
updated.a_equation != current.a_equation) {
if (updated.rgb_equation != current.rgb_equation || updated.a_equation != current.a_equation) {
glBlendEquationSeparate(updated.rgb_equation, updated.a_equation);
}
}
@@ -354,26 +341,22 @@ void OpenGLState::ApplyGlobalBlending() const {
void OpenGLState::ApplyTargetBlending(std::size_t target, bool force) const {
const Blend& updated = blend[target];
const Blend& current = cur_state.blend[target];
const bool blend_changed = updated.enabled != current.enabled || force;
if (blend_changed) {
if (updated.enabled != current.enabled || force) {
if (updated.enabled) {
glEnablei(GL_BLEND, static_cast<GLuint>(target));
} else {
glDisablei(GL_BLEND, static_cast<GLuint>(target));
}
}
if (!updated.enabled) {
return;
}
if (blend_changed || updated.src_rgb_func != current.src_rgb_func ||
if (updated.src_rgb_func != current.src_rgb_func ||
updated.dst_rgb_func != current.dst_rgb_func || updated.src_a_func != current.src_a_func ||
updated.dst_a_func != current.dst_a_func) {
glBlendFuncSeparatei(static_cast<GLuint>(target), updated.src_rgb_func,
updated.dst_rgb_func, updated.src_a_func, updated.dst_a_func);
}
if (blend_changed || updated.rgb_equation != current.rgb_equation ||
updated.a_equation != current.a_equation) {
if (updated.rgb_equation != current.rgb_equation || updated.a_equation != current.a_equation) {
glBlendEquationSeparatei(static_cast<GLuint>(target), updated.rgb_equation,
updated.a_equation);
}
@@ -397,8 +380,7 @@ void OpenGLState::ApplyBlending() const {
}
void OpenGLState::ApplyLogicOp() const {
const bool logic_op_changed = logic_op.enabled != cur_state.logic_op.enabled;
if (logic_op_changed) {
if (logic_op.enabled != cur_state.logic_op.enabled) {
if (logic_op.enabled) {
glEnable(GL_COLOR_LOGIC_OP);
} else {
@@ -406,14 +388,12 @@ void OpenGLState::ApplyLogicOp() const {
}
}
if (logic_op.enabled &&
(logic_op_changed || logic_op.operation != cur_state.logic_op.operation)) {
if (logic_op.operation != cur_state.logic_op.operation) {
glLogicOp(logic_op.operation);
}
}
void OpenGLState::ApplyPolygonOffset() const {
const bool fill_enable_changed =
polygon_offset.fill_enable != cur_state.polygon_offset.fill_enable;
const bool line_enable_changed =
@@ -448,9 +428,7 @@ void OpenGLState::ApplyPolygonOffset() const {
}
}
if ((polygon_offset.fill_enable || polygon_offset.line_enable || polygon_offset.point_enable) &&
(factor_changed || units_changed || clamp_changed)) {
if (factor_changed || units_changed || clamp_changed) {
if (GLAD_GL_EXT_polygon_offset_clamp && polygon_offset.clamp != 0) {
glPolygonOffsetClamp(polygon_offset.factor, polygon_offset.units, polygon_offset.clamp);
} else {
@@ -483,7 +461,7 @@ void OpenGLState::ApplyTextures() const {
if (has_delta) {
glBindTextures(static_cast<GLuint>(first), static_cast<GLsizei>(last - first + 1),
textures.data());
textures.data() + first);
}
}
@@ -504,7 +482,7 @@ void OpenGLState::ApplySamplers() const {
}
if (has_delta) {
glBindSamplers(static_cast<GLuint>(first), static_cast<GLsizei>(last - first + 1),
samplers.data());
samplers.data() + first);
}
}
@@ -528,9 +506,9 @@ void OpenGLState::ApplyDepthClamp() const {
depth_clamp.near_plane == cur_state.depth_clamp.near_plane) {
return;
}
if (depth_clamp.far_plane != depth_clamp.near_plane) {
UNIMPLEMENTED_MSG("Unimplemented Depth Clamp Separation!");
}
UNIMPLEMENTED_IF_MSG(depth_clamp.far_plane != depth_clamp.near_plane,
"Unimplemented Depth Clamp Separation!");
if (depth_clamp.far_plane || depth_clamp.near_plane) {
glEnable(GL_DEPTH_CLAMP);
} else {

View File

@@ -257,6 +257,7 @@ void RendererOpenGL::ConfigureFramebufferTexture(TextureInfo& texture,
const Tegra::FramebufferConfig& framebuffer) {
texture.width = framebuffer.width;
texture.height = framebuffer.height;
texture.pixel_format = framebuffer.pixel_format;
GLint internal_format;
switch (framebuffer.pixel_format) {

View File

@@ -39,7 +39,7 @@ struct TextureInfo {
/// Structure used for storing information about the display target for the Switch screen
struct ScreenInfo {
GLuint display_texture;
const MathUtil::Rectangle<float> display_texcoords{0.0f, 0.0f, 1.0f, 1.0f};
const Common::Rectangle<float> display_texcoords{0.0f, 0.0f, 1.0f, 1.0f};
TextureInfo texture;
};
@@ -102,7 +102,7 @@ private:
/// Used for transforming the framebuffer orientation
Tegra::FramebufferConfig::TransformFlags framebuffer_transform_flags;
MathUtil::Rectangle<int> framebuffer_crop_rect;
Common::Rectangle<int> framebuffer_crop_rect;
};
} // namespace OpenGL

View File

@@ -0,0 +1,252 @@
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <optional>
#include <tuple>
#include <vector>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_memory_manager.h"
namespace Vulkan {
// TODO(Rodrigo): Fine tune this number
constexpr u64 ALLOC_CHUNK_SIZE = 64 * 1024 * 1024;
class VKMemoryAllocation final {
public:
explicit VKMemoryAllocation(const VKDevice& device, vk::DeviceMemory memory,
vk::MemoryPropertyFlags properties, u64 alloc_size, u32 type)
: device{device}, memory{memory}, properties{properties}, alloc_size{alloc_size},
shifted_type{ShiftType(type)}, is_mappable{properties &
vk::MemoryPropertyFlagBits::eHostVisible} {
if (is_mappable) {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
base_address = static_cast<u8*>(dev.mapMemory(memory, 0, alloc_size, {}, dld));
}
}
~VKMemoryAllocation() {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
if (is_mappable)
dev.unmapMemory(memory, dld);
dev.free(memory, nullptr, dld);
}
VKMemoryCommit Commit(vk::DeviceSize commit_size, vk::DeviceSize alignment) {
auto found = TryFindFreeSection(free_iterator, alloc_size, static_cast<u64>(commit_size),
static_cast<u64>(alignment));
if (!found) {
found = TryFindFreeSection(0, free_iterator, static_cast<u64>(commit_size),
static_cast<u64>(alignment));
if (!found) {
// Signal out of memory, it'll try to do more allocations.
return nullptr;
}
}
u8* address = is_mappable ? base_address + *found : nullptr;
auto commit = std::make_unique<VKMemoryCommitImpl>(this, memory, address, *found,
*found + commit_size);
commits.push_back(commit.get());
// Last commit's address is highly probable to be free.
free_iterator = *found + commit_size;
return commit;
}
void Free(const VKMemoryCommitImpl* commit) {
ASSERT(commit);
const auto it =
std::find_if(commits.begin(), commits.end(),
[&](const auto& stored_commit) { return stored_commit == commit; });
if (it == commits.end()) {
LOG_CRITICAL(Render_Vulkan, "Freeing unallocated commit!");
UNREACHABLE();
return;
}
commits.erase(it);
}
/// Returns whether this allocation is compatible with the arguments.
bool IsCompatible(vk::MemoryPropertyFlags wanted_properties, u32 type_mask) const {
return (wanted_properties & properties) != vk::MemoryPropertyFlagBits(0) &&
(type_mask & shifted_type) != 0;
}
private:
static constexpr u32 ShiftType(u32 type) {
return 1U << type;
}
/// A memory allocator, it may return a free region between "start" and "end" with the solicited
/// requeriments.
std::optional<u64> TryFindFreeSection(u64 start, u64 end, u64 size, u64 alignment) const {
u64 iterator = start;
while (iterator + size < end) {
const u64 try_left = Common::AlignUp(iterator, alignment);
const u64 try_right = try_left + size;
bool overlap = false;
for (const auto& commit : commits) {
const auto [commit_left, commit_right] = commit->interval;
if (try_left < commit_right && commit_left < try_right) {
// There's an overlap, continue the search where the overlapping commit ends.
iterator = commit_right;
overlap = true;
break;
}
}
if (!overlap) {
// A free address has been found.
return try_left;
}
}
// No free regions where found, return an empty optional.
return std::nullopt;
}
const VKDevice& device; ///< Vulkan device.
const vk::DeviceMemory memory; ///< Vulkan memory allocation handler.
const vk::MemoryPropertyFlags properties; ///< Vulkan properties.
const u64 alloc_size; ///< Size of this allocation.
const u32 shifted_type; ///< Stored Vulkan type of this allocation, shifted.
const bool is_mappable; ///< Whether the allocation is mappable.
/// Base address of the mapped pointer.
u8* base_address{};
/// Hints where the next free region is likely going to be.
u64 free_iterator{};
/// Stores all commits done from this allocation.
std::vector<const VKMemoryCommitImpl*> commits;
};
VKMemoryManager::VKMemoryManager(const VKDevice& device)
: device{device}, props{device.GetPhysical().getMemoryProperties(device.GetDispatchLoader())},
is_memory_unified{GetMemoryUnified(props)} {}
VKMemoryManager::~VKMemoryManager() = default;
VKMemoryCommit VKMemoryManager::Commit(const vk::MemoryRequirements& reqs, bool host_visible) {
ASSERT(reqs.size < ALLOC_CHUNK_SIZE);
// When a host visible commit is asked, search for host visible and coherent, otherwise search
// for a fast device local type.
const vk::MemoryPropertyFlags wanted_properties =
host_visible
? vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent
: vk::MemoryPropertyFlagBits::eDeviceLocal;
const auto TryCommit = [&]() -> VKMemoryCommit {
for (auto& alloc : allocs) {
if (!alloc->IsCompatible(wanted_properties, reqs.memoryTypeBits))
continue;
if (auto commit = alloc->Commit(reqs.size, reqs.alignment); commit) {
return commit;
}
}
return {};
};
if (auto commit = TryCommit(); commit) {
return commit;
}
// Commit has failed, allocate more memory.
if (!AllocMemory(wanted_properties, reqs.memoryTypeBits, ALLOC_CHUNK_SIZE)) {
// TODO(Rodrigo): Try to use host memory.
LOG_CRITICAL(Render_Vulkan, "Ran out of memory!");
UNREACHABLE();
}
// Commit again, this time it won't fail since there's a fresh allocation above. If it does,
// there's a bug.
auto commit = TryCommit();
ASSERT(commit);
return commit;
}
VKMemoryCommit VKMemoryManager::Commit(vk::Buffer buffer, bool host_visible) {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
const auto requeriments = dev.getBufferMemoryRequirements(buffer, dld);
auto commit = Commit(requeriments, host_visible);
dev.bindBufferMemory(buffer, commit->GetMemory(), commit->GetOffset(), dld);
return commit;
}
VKMemoryCommit VKMemoryManager::Commit(vk::Image image, bool host_visible) {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
const auto requeriments = dev.getImageMemoryRequirements(image, dld);
auto commit = Commit(requeriments, host_visible);
dev.bindImageMemory(image, commit->GetMemory(), commit->GetOffset(), dld);
return commit;
}
bool VKMemoryManager::AllocMemory(vk::MemoryPropertyFlags wanted_properties, u32 type_mask,
u64 size) {
const u32 type = [&]() {
for (u32 type_index = 0; type_index < props.memoryTypeCount; ++type_index) {
const auto flags = props.memoryTypes[type_index].propertyFlags;
if ((type_mask & (1U << type_index)) && (flags & wanted_properties)) {
// The type matches in type and in the wanted properties.
return type_index;
}
}
LOG_CRITICAL(Render_Vulkan, "Couldn't find a compatible memory type!");
UNREACHABLE();
return 0u;
}();
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
// Try to allocate found type.
const vk::MemoryAllocateInfo memory_ai(size, type);
vk::DeviceMemory memory;
if (const vk::Result res = dev.allocateMemory(&memory_ai, nullptr, &memory, dld);
res != vk::Result::eSuccess) {
LOG_CRITICAL(Render_Vulkan, "Device allocation failed with code {}!", vk::to_string(res));
return false;
}
allocs.push_back(
std::make_unique<VKMemoryAllocation>(device, memory, wanted_properties, size, type));
return true;
}
/*static*/ bool VKMemoryManager::GetMemoryUnified(const vk::PhysicalDeviceMemoryProperties& props) {
for (u32 heap_index = 0; heap_index < props.memoryHeapCount; ++heap_index) {
if (!(props.memoryHeaps[heap_index].flags & vk::MemoryHeapFlagBits::eDeviceLocal)) {
// Memory is considered unified when heaps are device local only.
return false;
}
}
return true;
}
VKMemoryCommitImpl::VKMemoryCommitImpl(VKMemoryAllocation* allocation, vk::DeviceMemory memory,
u8* data, u64 begin, u64 end)
: interval(std::make_pair(begin, end)), memory{memory}, allocation{allocation}, data{data} {}
VKMemoryCommitImpl::~VKMemoryCommitImpl() {
allocation->Free(this);
}
u8* VKMemoryCommitImpl::GetData() const {
ASSERT_MSG(data != nullptr, "Trying to access an unmapped commit.");
return data;
}
} // namespace Vulkan

View File

@@ -0,0 +1,87 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <utility>
#include <vector>
#include "common/common_types.h"
#include "video_core/renderer_vulkan/declarations.h"
namespace Vulkan {
class VKDevice;
class VKMemoryAllocation;
class VKMemoryCommitImpl;
using VKMemoryCommit = std::unique_ptr<VKMemoryCommitImpl>;
class VKMemoryManager final {
public:
explicit VKMemoryManager(const VKDevice& device);
~VKMemoryManager();
/**
* Commits a memory with the specified requeriments.
* @param reqs Requeriments returned from a Vulkan call.
* @param host_visible Signals the allocator that it *must* use host visible and coherent
* memory. When passing false, it will try to allocate device local memory.
* @returns A memory commit.
*/
VKMemoryCommit Commit(const vk::MemoryRequirements& reqs, bool host_visible);
/// Commits memory required by the buffer and binds it.
VKMemoryCommit Commit(vk::Buffer buffer, bool host_visible);
/// Commits memory required by the image and binds it.
VKMemoryCommit Commit(vk::Image image, bool host_visible);
/// Returns true if the memory allocations are done always in host visible and coherent memory.
bool IsMemoryUnified() const {
return is_memory_unified;
}
private:
/// Allocates a chunk of memory.
bool AllocMemory(vk::MemoryPropertyFlags wanted_properties, u32 type_mask, u64 size);
/// Returns true if the device uses an unified memory model.
static bool GetMemoryUnified(const vk::PhysicalDeviceMemoryProperties& props);
const VKDevice& device; ///< Device handler.
const vk::PhysicalDeviceMemoryProperties props; ///< Physical device properties.
const bool is_memory_unified; ///< True if memory model is unified.
std::vector<std::unique_ptr<VKMemoryAllocation>> allocs; ///< Current allocations.
};
class VKMemoryCommitImpl final {
friend VKMemoryAllocation;
public:
explicit VKMemoryCommitImpl(VKMemoryAllocation* allocation, vk::DeviceMemory memory, u8* data,
u64 begin, u64 end);
~VKMemoryCommitImpl();
/// Returns the writeable memory map. The commit has to be mappable.
u8* GetData() const;
/// Returns the Vulkan memory handler.
vk::DeviceMemory GetMemory() const {
return memory;
}
/// Returns the start position of the commit relative to the allocation.
vk::DeviceSize GetOffset() const {
return static_cast<vk::DeviceSize>(interval.first);
}
private:
std::pair<u64, u64> interval{}; ///< Interval where the commit exists.
vk::DeviceMemory memory; ///< Vulkan device memory handler.
VKMemoryAllocation* allocation{}; ///< Pointer to the large memory allocation.
u8* data{}; ///< Pointer to the host mapped memory, it has the commit offset included.
};
} // namespace Vulkan

View File

@@ -125,11 +125,12 @@ void VKFence::Protect(VKResource* resource) {
protected_resources.push_back(resource);
}
void VKFence::Unprotect(const VKResource* resource) {
void VKFence::Unprotect(VKResource* resource) {
const auto it = std::find(protected_resources.begin(), protected_resources.end(), resource);
if (it != protected_resources.end()) {
protected_resources.erase(it);
}
ASSERT(it != protected_resources.end());
resource->OnFenceRemoval(this);
protected_resources.erase(it);
}
VKFenceWatch::VKFenceWatch() = default;
@@ -141,12 +142,11 @@ VKFenceWatch::~VKFenceWatch() {
}
void VKFenceWatch::Wait() {
if (!fence) {
if (fence == nullptr) {
return;
}
fence->Wait();
fence->Unprotect(this);
fence = nullptr;
}
void VKFenceWatch::Watch(VKFence& new_fence) {

View File

@@ -63,7 +63,7 @@ public:
void Protect(VKResource* resource);
/// Removes protection for a resource.
void Unprotect(const VKResource* resource);
void Unprotect(VKResource* resource);
/// Retreives the fence.
operator vk::Fence() const {

View File

@@ -0,0 +1,60 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/logging/log.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
namespace Vulkan {
VKScheduler::VKScheduler(const VKDevice& device, VKResourceManager& resource_manager)
: device{device}, resource_manager{resource_manager} {
next_fence = &resource_manager.CommitFence();
AllocateNewContext();
}
VKScheduler::~VKScheduler() = default;
VKExecutionContext VKScheduler::GetExecutionContext() const {
return VKExecutionContext(current_fence, current_cmdbuf);
}
VKExecutionContext VKScheduler::Flush(vk::Semaphore semaphore) {
SubmitExecution(semaphore);
current_fence->Release();
AllocateNewContext();
return GetExecutionContext();
}
VKExecutionContext VKScheduler::Finish(vk::Semaphore semaphore) {
SubmitExecution(semaphore);
current_fence->Wait();
current_fence->Release();
AllocateNewContext();
return GetExecutionContext();
}
void VKScheduler::SubmitExecution(vk::Semaphore semaphore) {
const auto& dld = device.GetDispatchLoader();
current_cmdbuf.end(dld);
const auto queue = device.GetGraphicsQueue();
const vk::SubmitInfo submit_info(0, nullptr, nullptr, 1, &current_cmdbuf, semaphore ? 1u : 0u,
&semaphore);
queue.submit({submit_info}, *current_fence, dld);
}
void VKScheduler::AllocateNewContext() {
current_fence = next_fence;
current_cmdbuf = resource_manager.CommitCommandBuffer(*current_fence);
next_fence = &resource_manager.CommitFence();
const auto& dld = device.GetDispatchLoader();
current_cmdbuf.begin({vk::CommandBufferUsageFlagBits::eOneTimeSubmit}, dld);
}
} // namespace Vulkan

View File

@@ -0,0 +1,69 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
#include "video_core/renderer_vulkan/declarations.h"
namespace Vulkan {
class VKDevice;
class VKExecutionContext;
class VKFence;
class VKResourceManager;
/// The scheduler abstracts command buffer and fence management with an interface that's able to do
/// OpenGL-like operations on Vulkan command buffers.
class VKScheduler {
public:
explicit VKScheduler(const VKDevice& device, VKResourceManager& resource_manager);
~VKScheduler();
/// Gets the current execution context.
[[nodiscard]] VKExecutionContext GetExecutionContext() const;
/// Sends the current execution context to the GPU. It invalidates the current execution context
/// and returns a new one.
VKExecutionContext Flush(vk::Semaphore semaphore = nullptr);
/// Sends the current execution context to the GPU and waits for it to complete. It invalidates
/// the current execution context and returns a new one.
VKExecutionContext Finish(vk::Semaphore semaphore = nullptr);
private:
void SubmitExecution(vk::Semaphore semaphore);
void AllocateNewContext();
const VKDevice& device;
VKResourceManager& resource_manager;
vk::CommandBuffer current_cmdbuf;
VKFence* current_fence = nullptr;
VKFence* next_fence = nullptr;
};
class VKExecutionContext {
friend class VKScheduler;
public:
VKExecutionContext() = default;
VKFence& GetFence() const {
return *fence;
}
vk::CommandBuffer GetCommandBuffer() const {
return cmdbuf;
}
private:
explicit VKExecutionContext(VKFence* fence, vk::CommandBuffer cmdbuf)
: fence{fence}, cmdbuf{cmdbuf} {}
VKFence* fence{};
vk::CommandBuffer cmdbuf;
};
} // namespace Vulkan

View File

@@ -0,0 +1,90 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include <optional>
#include <vector>
#include "common/assert.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_memory_manager.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_stream_buffer.h"
namespace Vulkan {
constexpr u64 WATCHES_INITIAL_RESERVE = 0x4000;
constexpr u64 WATCHES_RESERVE_CHUNK = 0x1000;
VKStreamBuffer::VKStreamBuffer(const VKDevice& device, VKMemoryManager& memory_manager,
VKScheduler& scheduler, u64 size, vk::BufferUsageFlags usage,
vk::AccessFlags access, vk::PipelineStageFlags pipeline_stage)
: device{device}, scheduler{scheduler}, buffer_size{size}, access{access}, pipeline_stage{
pipeline_stage} {
CreateBuffers(memory_manager, usage);
ReserveWatches(WATCHES_INITIAL_RESERVE);
}
VKStreamBuffer::~VKStreamBuffer() = default;
std::tuple<u8*, u64, bool> VKStreamBuffer::Reserve(u64 size) {
ASSERT(size <= buffer_size);
mapped_size = size;
if (offset + size > buffer_size) {
// The buffer would overflow, save the amount of used buffers, signal an invalidation and
// reset the state.
invalidation_mark = used_watches;
used_watches = 0;
offset = 0;
}
return {mapped_pointer + offset, offset, invalidation_mark.has_value()};
}
VKExecutionContext VKStreamBuffer::Send(VKExecutionContext exctx, u64 size) {
ASSERT_MSG(size <= mapped_size, "Reserved size is too small");
if (invalidation_mark) {
// TODO(Rodrigo): Find a better way to invalidate than waiting for all watches to finish.
exctx = scheduler.Flush();
std::for_each(watches.begin(), watches.begin() + *invalidation_mark,
[&](auto& resource) { resource->Wait(); });
invalidation_mark = std::nullopt;
}
if (used_watches + 1 >= watches.size()) {
// Ensure that there are enough watches.
ReserveWatches(WATCHES_RESERVE_CHUNK);
}
// Add a watch for this allocation.
watches[used_watches++]->Watch(exctx.GetFence());
offset += size;
return exctx;
}
void VKStreamBuffer::CreateBuffers(VKMemoryManager& memory_manager, vk::BufferUsageFlags usage) {
const vk::BufferCreateInfo buffer_ci({}, buffer_size, usage, vk::SharingMode::eExclusive, 0,
nullptr);
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
buffer = dev.createBufferUnique(buffer_ci, nullptr, dld);
commit = memory_manager.Commit(*buffer, true);
mapped_pointer = commit->GetData();
}
void VKStreamBuffer::ReserveWatches(std::size_t grow_size) {
const std::size_t previous_size = watches.size();
watches.resize(previous_size + grow_size);
std::generate(watches.begin() + previous_size, watches.end(),
[]() { return std::make_unique<VKFenceWatch>(); });
}
} // namespace Vulkan

View File

@@ -0,0 +1,72 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <optional>
#include <tuple>
#include <vector>
#include "common/common_types.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_memory_manager.h"
namespace Vulkan {
class VKDevice;
class VKFence;
class VKFenceWatch;
class VKResourceManager;
class VKScheduler;
class VKStreamBuffer {
public:
explicit VKStreamBuffer(const VKDevice& device, VKMemoryManager& memory_manager,
VKScheduler& scheduler, u64 size, vk::BufferUsageFlags usage,
vk::AccessFlags access, vk::PipelineStageFlags pipeline_stage);
~VKStreamBuffer();
/**
* Reserves a region of memory from the stream buffer.
* @param size Size to reserve.
* @returns A tuple in the following order: Raw memory pointer (with offset added), buffer
* offset and a boolean that's true when buffer has been invalidated.
*/
std::tuple<u8*, u64, bool> Reserve(u64 size);
/// Ensures that "size" bytes of memory are available to the GPU, potentially recording a copy.
[[nodiscard]] VKExecutionContext Send(VKExecutionContext exctx, u64 size);
vk::Buffer GetBuffer() const {
return *buffer;
}
private:
/// Creates Vulkan buffer handles committing the required the required memory.
void CreateBuffers(VKMemoryManager& memory_manager, vk::BufferUsageFlags usage);
/// Increases the amount of watches available.
void ReserveWatches(std::size_t grow_size);
const VKDevice& device; ///< Vulkan device manager.
VKScheduler& scheduler; ///< Command scheduler.
const u64 buffer_size; ///< Total size of the stream buffer.
const vk::AccessFlags access; ///< Access usage of this stream buffer.
const vk::PipelineStageFlags pipeline_stage; ///< Pipeline usage of this stream buffer.
UniqueBuffer buffer; ///< Mapped buffer.
VKMemoryCommit commit; ///< Memory commit.
u8* mapped_pointer{}; ///< Pointer to the host visible commit
u64 offset{}; ///< Buffer iterator.
u64 mapped_size{}; ///< Size reserved for the current copy.
std::vector<std::unique_ptr<VKFenceWatch>> watches; ///< Total watches
std::size_t used_watches{}; ///< Count of watches, reset on invalidation.
std::optional<std::size_t>
invalidation_mark{}; ///< Number of watches used in the current invalidation.
};
} // namespace Vulkan

View File

@@ -48,7 +48,7 @@ u32 ShaderIR::DecodeMemory(NodeBlock& bb, u32 pc) {
UNIMPLEMENTED_IF_MSG((instr.attribute.fmt20.immediate.Value() % sizeof(u32)) != 0,
"Unaligned attribute loads are not supported");
Tegra::Shader::IpaMode input_mode{Tegra::Shader::IpaInterpMode::Perspective,
Tegra::Shader::IpaMode input_mode{Tegra::Shader::IpaInterpMode::Pass,
Tegra::Shader::IpaSampleMode::Default};
u64 next_element = instr.attribute.fmt20.element;

View File

@@ -135,7 +135,18 @@ u32 ShaderIR::DecodeOther(NodeBlock& bb, u32 pc) {
instr.ipa.sample_mode.Value()};
const Node attr = GetInputAttribute(attribute.index, attribute.element, input_mode);
const Node value = GetSaturatedFloat(attr, instr.ipa.saturate);
Node value = attr;
const Tegra::Shader::Attribute::Index index = attribute.index.Value();
if (index >= Tegra::Shader::Attribute::Index::Attribute_0 &&
index <= Tegra::Shader::Attribute::Index::Attribute_31) {
// TODO(Blinkhawk): There are cases where a perspective attribute use PASS.
// In theory by setting them as perspective, OpenGL does the perspective correction.
// A way must figured to reverse the last step of it.
if (input_mode.interpolation_mode == Tegra::Shader::IpaInterpMode::Multiply) {
value = Operation(OperationCode::FMul, PRECISE, value, GetRegister(instr.gpr20));
}
}
value = GetSaturatedFloat(value, instr.ipa.saturate);
SetRegister(bb, instr.gpr0, value);
break;
@@ -175,4 +186,4 @@ u32 ShaderIR::DecodeOther(NodeBlock& bb, u32 pc) {
return pc;
}
} // namespace VideoCommon::Shader
} // namespace VideoCommon::Shader

View File

@@ -20,9 +20,9 @@ std::pair<Node, s64> FindOperation(const NodeBlock& code, s64 cursor,
return {node, cursor};
}
if (const auto conditional = std::get_if<ConditionalNode>(node)) {
const auto& code = conditional->GetCode();
const auto [found, internal_cursor] =
FindOperation(code, static_cast<s64>(code.size() - 1), operation_code);
const auto& conditional_code = conditional->GetCode();
const auto [found, internal_cursor] = FindOperation(
conditional_code, static_cast<s64>(conditional_code.size() - 1), operation_code);
if (found)
return {found, cursor};
}
@@ -58,8 +58,8 @@ Node ShaderIR::TrackCbuf(Node tracked, const NodeBlock& code, s64 cursor) {
return nullptr;
}
if (const auto conditional = std::get_if<ConditionalNode>(tracked)) {
const auto& code = conditional->GetCode();
return TrackCbuf(tracked, code, static_cast<s64>(code.size()));
const auto& conditional_code = conditional->GetCode();
return TrackCbuf(tracked, conditional_code, static_cast<s64>(conditional_code.size()));
}
return nullptr;
}

View File

@@ -398,7 +398,7 @@ void GraphicsSurfaceWidget::OnUpdate() {
for (unsigned int y = 0; y < surface_height; ++y) {
for (unsigned int x = 0; x < surface_width; ++x) {
Math::Vec4<u8> color;
Common::Vec4<u8> color;
color[0] = texture_data[x + y * surface_width + 0];
color[1] = texture_data[x + y * surface_width + 1];
color[2] = texture_data[x + y * surface_width + 2];