Compare commits

..

4 Commits

Author SHA1 Message Date
Fernando Sahmkow
a8d4927e29 Corrections, documenting and fixes. 2019-02-16 16:52:24 -04:00
Fernando Sahmkow
ecccfe0337 Use u128 on Clock Cycles calculation. 2019-02-15 22:57:16 -04:00
Fernando Sahmkow
3ea48e8ebe Implement 128 bits Unsigned Integer Multiplication and Division. 2019-02-15 22:55:31 -04:00
Fernando Sahmkow
5b7ec71fb7 Correct CNTPCT to use Clock Cycles instead of Cpu Cycles. 2019-02-15 22:55:29 -04:00
89 changed files with 584 additions and 1992 deletions

View File

@@ -46,18 +46,16 @@ struct AudioRendererParameter {
u32_le sample_rate;
u32_le sample_count;
u32_le mix_buffer_count;
u32_le submix_count;
u32_le unknown_c;
u32_le voice_count;
u32_le sink_count;
u32_le effect_count;
u32_le performance_frame_count;
u8 is_voice_drop_enabled;
u8 unknown_21;
u8 unknown_22;
u8 execution_mode;
u32_le unknown_1c;
u8 unknown_20;
INSERT_PADDING_BYTES(3);
u32_le splitter_count;
u32_le num_splitter_send_channels;
u32_le unknown_30;
u32_le unknown_2c;
INSERT_PADDING_WORDS(1);
u32_le revision;
};
static_assert(sizeof(AudioRendererParameter) == 52, "AudioRendererParameter is an invalid size");

View File

@@ -21,7 +21,7 @@ public:
Buffer(Tag tag, std::vector<s16>&& samples) : tag{tag}, samples{std::move(samples)} {}
/// Returns the raw audio data for the buffer
std::vector<s16>& GetSamples() {
std::vector<s16>& Samples() {
return samples;
}

View File

@@ -68,8 +68,8 @@ std::vector<s16> DecodeADPCM(const u8* const data, std::size_t size, const ADPCM
}
}
state.yn1 = static_cast<s16>(yn1);
state.yn2 = static_cast<s16>(yn2);
state.yn1 = yn1;
state.yn2 = yn2;
return ret;
}

View File

@@ -12,10 +12,6 @@
#include "common/ring_buffer.h"
#include "core/settings.h"
#ifdef _MSC_VER
#include <objbase.h>
#endif
namespace AudioCore {
class CubebSinkStream final : public SinkStream {
@@ -50,7 +46,7 @@ public:
}
}
~CubebSinkStream() override {
~CubebSinkStream() {
if (!ctx) {
return;
}
@@ -79,11 +75,11 @@ public:
queue.Push(samples);
}
std::size_t SamplesInQueue(u32 channel_count) const override {
std::size_t SamplesInQueue(u32 num_channels) const override {
if (!ctx)
return 0;
return queue.Size() / channel_count;
return queue.Size() / num_channels;
}
void Flush() override {
@@ -102,7 +98,7 @@ private:
u32 num_channels{};
Common::RingBuffer<s16, 0x10000> queue;
std::array<s16, 2> last_frame{};
std::array<s16, 2> last_frame;
std::atomic<bool> should_flush{};
TimeStretcher time_stretch;
@@ -112,11 +108,6 @@ private:
};
CubebSink::CubebSink(std::string_view target_device_name) {
// Cubeb requires COM to be initialized on the thread calling cubeb_init on Windows
#ifdef _MSC_VER
com_init_result = CoInitializeEx(nullptr, COINIT_MULTITHREADED);
#endif
if (cubeb_init(&ctx, "yuzu", nullptr) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "cubeb_init failed");
return;
@@ -151,12 +142,6 @@ CubebSink::~CubebSink() {
}
cubeb_destroy(ctx);
#ifdef _MSC_VER
if (SUCCEEDED(com_init_result)) {
CoUninitialize();
}
#endif
}
SinkStream& CubebSink::AcquireSinkStream(u32 sample_rate, u32 num_channels,

View File

@@ -25,10 +25,6 @@ private:
cubeb* ctx{};
cubeb_devid output_device{};
std::vector<SinkStreamPtr> sink_streams;
#ifdef _MSC_VER
u32 com_init_result = 0;
#endif
};
std::vector<std::string> ListCubebSinkDevices();

View File

@@ -95,7 +95,7 @@ void Stream::PlayNextBuffer() {
active_buffer = queued_buffers.front();
queued_buffers.pop();
VolumeAdjustSamples(active_buffer->GetSamples());
VolumeAdjustSamples(active_buffer->Samples());
sink_stream.EnqueueSamples(GetNumChannels(), active_buffer->GetSamples());

View File

@@ -113,6 +113,8 @@ add_library(common STATIC
threadsafe_queue.h
timer.cpp
timer.h
uint128.cpp
uint128.h
vector_math.h
web_result.h
)

View File

@@ -55,36 +55,36 @@ constexpr u8 Convert8To6(u8 value) {
/**
* Decode a color stored in RGBA8 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
* @return Result color decoded as Math::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRGBA8(const u8* bytes) {
inline Math::Vec4<u8> DecodeRGBA8(const u8* bytes) {
return {bytes[3], bytes[2], bytes[1], bytes[0]};
}
/**
* Decode a color stored in RGB8 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
* @return Result color decoded as Math::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRGB8(const u8* bytes) {
inline Math::Vec4<u8> DecodeRGB8(const u8* bytes) {
return {bytes[2], bytes[1], bytes[0], 255};
}
/**
* Decode a color stored in RG8 (aka HILO8) format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
* @return Result color decoded as Math::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRG8(const u8* bytes) {
inline Math::Vec4<u8> DecodeRG8(const u8* bytes) {
return {bytes[1], bytes[0], 0, 255};
}
/**
* Decode a color stored in RGB565 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
* @return Result color decoded as Math::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRGB565(const u8* bytes) {
inline Math::Vec4<u8> DecodeRGB565(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert5To8((pixel >> 11) & 0x1F), Convert6To8((pixel >> 5) & 0x3F),
@@ -94,9 +94,9 @@ inline Common::Vec4<u8> DecodeRGB565(const u8* bytes) {
/**
* Decode a color stored in RGB5A1 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
* @return Result color decoded as Math::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
inline Math::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert5To8((pixel >> 11) & 0x1F), Convert5To8((pixel >> 6) & 0x1F),
@@ -106,9 +106,9 @@ inline Common::Vec4<u8> DecodeRGB5A1(const u8* bytes) {
/**
* Decode a color stored in RGBA4 format
* @param bytes Pointer to encoded source color
* @return Result color decoded as Common::Vec4<u8>
* @return Result color decoded as Math::Vec4<u8>
*/
inline Common::Vec4<u8> DecodeRGBA4(const u8* bytes) {
inline Math::Vec4<u8> DecodeRGBA4(const u8* bytes) {
u16_le pixel;
std::memcpy(&pixel, bytes, sizeof(pixel));
return {Convert4To8((pixel >> 12) & 0xF), Convert4To8((pixel >> 8) & 0xF),
@@ -138,9 +138,9 @@ inline u32 DecodeD24(const u8* bytes) {
/**
* Decode a depth value and a stencil value stored in D24S8 format
* @param bytes Pointer to encoded source values
* @return Resulting values stored as a Common::Vec2
* @return Resulting values stored as a Math::Vec2
*/
inline Common::Vec2<u32> DecodeD24S8(const u8* bytes) {
inline Math::Vec2<u32> DecodeD24S8(const u8* bytes) {
return {static_cast<u32>((bytes[2] << 16) | (bytes[1] << 8) | bytes[0]), bytes[3]};
}
@@ -149,7 +149,7 @@ inline Common::Vec2<u32> DecodeD24S8(const u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGBA8(const Common::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGBA8(const Math::Vec4<u8>& color, u8* bytes) {
bytes[3] = color.r();
bytes[2] = color.g();
bytes[1] = color.b();
@@ -161,7 +161,7 @@ inline void EncodeRGBA8(const Common::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGB8(const Common::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGB8(const Math::Vec4<u8>& color, u8* bytes) {
bytes[2] = color.r();
bytes[1] = color.g();
bytes[0] = color.b();
@@ -172,7 +172,7 @@ inline void EncodeRGB8(const Common::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRG8(const Common::Vec4<u8>& color, u8* bytes) {
inline void EncodeRG8(const Math::Vec4<u8>& color, u8* bytes) {
bytes[1] = color.r();
bytes[0] = color.g();
}
@@ -181,7 +181,7 @@ inline void EncodeRG8(const Common::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGB565(const Common::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGB565(const Math::Vec4<u8>& color, u8* bytes) {
const u16_le data =
(Convert8To5(color.r()) << 11) | (Convert8To6(color.g()) << 5) | Convert8To5(color.b());
@@ -193,7 +193,7 @@ inline void EncodeRGB565(const Common::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGB5A1(const Common::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGB5A1(const Math::Vec4<u8>& color, u8* bytes) {
const u16_le data = (Convert8To5(color.r()) << 11) | (Convert8To5(color.g()) << 6) |
(Convert8To5(color.b()) << 1) | Convert8To1(color.a());
@@ -205,7 +205,7 @@ inline void EncodeRGB5A1(const Common::Vec4<u8>& color, u8* bytes) {
* @param color Source color to encode
* @param bytes Destination pointer to store encoded color
*/
inline void EncodeRGBA4(const Common::Vec4<u8>& color, u8* bytes) {
inline void EncodeRGBA4(const Math::Vec4<u8>& color, u8* bytes) {
const u16 data = (Convert8To4(color.r()) << 12) | (Convert8To4(color.g()) << 8) |
(Convert8To4(color.b()) << 4) | Convert8To4(color.a());

View File

@@ -40,7 +40,9 @@ public:
const Impl& operator=(Impl const&) = delete;
void PushEntry(Entry e) {
std::lock_guard<std::mutex> lock(message_mutex);
message_queue.Push(std::move(e));
message_cv.notify_one();
}
void AddBackend(std::unique_ptr<Backend> backend) {
@@ -84,13 +86,15 @@ private:
}
};
while (true) {
entry = message_queue.PopWait();
if (entry.final_entry) {
{
std::unique_lock<std::mutex> lock(message_mutex);
message_cv.wait(lock, [&] { return !running || message_queue.Pop(entry); });
}
if (!running) {
break;
}
write_logs(entry);
}
// Drain the logging queue. Only writes out up to MAX_LOGS_TO_WRITE to prevent a case
// where a system is repeatedly spamming logs even on close.
const int MAX_LOGS_TO_WRITE = filter.IsDebug() ? INT_MAX : 100;
@@ -102,13 +106,14 @@ private:
}
~Impl() {
Entry entry;
entry.final_entry = true;
message_queue.Push(entry);
running = false;
message_cv.notify_one();
backend_thread.join();
}
std::mutex writing_mutex;
std::atomic_bool running{true};
std::mutex message_mutex, writing_mutex;
std::condition_variable message_cv;
std::thread backend_thread;
std::vector<std::unique_ptr<Backend>> backends;
Common::MPSCQueue<Log::Entry> message_queue;

View File

@@ -27,7 +27,6 @@ struct Entry {
unsigned int line_num;
std::string function;
std::string message;
bool final_entry = false;
Entry() = default;
Entry(Entry&& o) = default;

View File

@@ -7,7 +7,7 @@
#include <cstdlib>
#include <type_traits>
namespace Common {
namespace MathUtil {
constexpr float PI = 3.14159265f;
@@ -41,4 +41,4 @@ struct Rectangle {
}
};
} // namespace Common
} // namespace MathUtil

View File

@@ -6,12 +6,12 @@
#include "common/vector_math.h"
namespace Common {
namespace Math {
template <typename T>
class Quaternion {
public:
Vec3<T> xyz;
Math::Vec3<T> xyz;
T w{};
Quaternion<decltype(-T{})> Inverse() const {
@@ -38,12 +38,12 @@ public:
};
template <typename T>
auto QuaternionRotate(const Quaternion<T>& q, const Vec3<T>& v) {
auto QuaternionRotate(const Quaternion<T>& q, const Math::Vec3<T>& v) {
return v + 2 * Cross(q.xyz, Cross(q.xyz, v) + v * q.w);
}
inline Quaternion<float> MakeQuaternion(const Vec3<float>& axis, float angle) {
inline Quaternion<float> MakeQuaternion(const Math::Vec3<float>& axis, float angle) {
return {axis * std::sin(angle / 2), std::cos(angle / 2)};
}
} // namespace Common
} // namespace Math

View File

@@ -28,8 +28,8 @@
#include <cstring>
#include "common/common_types.h"
// GCC
#ifdef __GNUC__
// GCC 4.6+
#if __GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
#if __BYTE_ORDER__ && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) && !defined(COMMON_LITTLE_ENDIAN)
#define COMMON_LITTLE_ENDIAN 1
@@ -38,7 +38,7 @@
#endif
// LLVM/clang
#elif defined(__clang__)
#elif __clang__
#if __LITTLE_ENDIAN__ && !defined(COMMON_LITTLE_ENDIAN)
#define COMMON_LITTLE_ENDIAN 1

View File

@@ -8,7 +8,6 @@
// single reader, single writer queue
#include <atomic>
#include <condition_variable>
#include <cstddef>
#include <mutex>
#include <utility>
@@ -46,7 +45,6 @@ public:
ElementPtr* new_ptr = new ElementPtr();
write_ptr->next.store(new_ptr, std::memory_order_release);
write_ptr = new_ptr;
cv.notify_one();
++size;
}
@@ -76,16 +74,6 @@ public:
return true;
}
T PopWait() {
if (Empty()) {
std::unique_lock<std::mutex> lock(cv_mutex);
cv.wait(lock, [this]() { return !Empty(); });
}
T t;
Pop(t);
return t;
}
// not thread-safe
void Clear() {
size.store(0);
@@ -113,8 +101,6 @@ private:
ElementPtr* write_ptr;
ElementPtr* read_ptr;
std::atomic_size_t size{0};
std::mutex cv_mutex;
std::condition_variable cv;
};
// a simple thread-safe,
@@ -149,10 +135,6 @@ public:
return spsc_queue.Pop(t);
}
T PopWait() {
return spsc_queue.PopWait();
}
// not thread-safe
void Clear() {
spsc_queue.Clear();

41
src/common/uint128.cpp Normal file
View File

@@ -0,0 +1,41 @@
#ifdef _MSC_VER
#include <intrin.h>
#pragma intrinsic(_umul128)
#endif
#include <cstring>
#include "common/uint128.h"
namespace Common {
u128 Multiply64Into128(u64 a, u64 b) {
u128 result;
#ifdef _MSC_VER
result[0] = _umul128(a, b, &result[1]);
#else
unsigned __int128 tmp = a;
tmp *= b;
std::memcpy(&result, &tmp, sizeof(u128));
#endif
return result;
}
std::pair<u64, u64> Divide128On32(u128 dividend, u32 divisor) {
u64 remainder = dividend[0] % divisor;
u64 accum = dividend[0] / divisor;
if (dividend[1] == 0)
return {accum, remainder};
// We ignore dividend[1] / divisor as that overflows
const u64 first_segment = (dividend[1] % divisor) << 32;
accum += (first_segment / divisor) << 32;
const u64 second_segment = (first_segment % divisor) << 32;
accum += (second_segment / divisor);
remainder += second_segment % divisor;
if (remainder >= divisor) {
accum++;
remainder -= divisor;
}
return {accum, remainder};
}
} // namespace Common

14
src/common/uint128.h Normal file
View File

@@ -0,0 +1,14 @@
#include <utility>
#include "common/common_types.h"
namespace Common {
// This function multiplies 2 u64 values and produces a u128 value;
u128 Multiply64Into128(u64 a, u64 b);
// This function divides a u128 by a u32 value and produces two u64 values:
// the result of division and the remainder
std::pair<u64, u64> Divide128On32(u128 dividend, u32 divisor);
} // namespace Common

View File

@@ -33,7 +33,7 @@
#include <cmath>
#include <type_traits>
namespace Common {
namespace Math {
template <typename T>
class Vec2;
@@ -690,4 +690,4 @@ constexpr Vec4<T> MakeVec(const T& x, const Vec3<T>& yzw) {
return MakeVec(x, yzw[0], yzw[1], yzw[2]);
}
} // namespace Common
} // namespace Math

View File

@@ -400,10 +400,6 @@ add_library(core STATIC
hle/service/time/time.h
hle/service/usb/usb.cpp
hle/service/usb/usb.h
hle/service/vi/display/vi_display.cpp
hle/service/vi/display/vi_display.h
hle/service/vi/layer/vi_layer.cpp
hle/service/vi/layer/vi_layer.h
hle/service/vi/vi.cpp
hle/service/vi/vi.h
hle/service/vi/vi_m.cpp

View File

@@ -12,6 +12,7 @@
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/gdbstub/gdbstub.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/svc.h"
@@ -119,7 +120,7 @@ public:
return std::max(parent.core_timing.GetDowncount(), 0);
}
u64 GetCNTPCT() override {
return parent.core_timing.GetTicks();
return Timing::CpuCyclesToClockCycles(parent.core_timing.GetTicks());
}
ARM_Dynarmic& parent;
@@ -151,7 +152,7 @@ std::unique_ptr<Dynarmic::A64::Jit> ARM_Dynarmic::MakeJit() const {
config.tpidr_el0 = &cb->tpidr_el0;
config.dczid_el0 = 4;
config.ctr_el0 = 0x8444c004;
config.cntfrq_el0 = 19200000; // Value from fusee.
config.cntfrq_el0 = Timing::CNTFREQ;
// Unpredictable instructions
config.define_unpredictable_behaviour = true;

View File

@@ -128,7 +128,7 @@ struct System::Impl {
return ResultStatus::ErrorVideoCore;
}
gpu_core = std::make_unique<Tegra::GPU>(system, renderer->Rasterizer());
gpu_core = std::make_unique<Tegra::GPU>(renderer->Rasterizer());
cpu_core_manager.Initialize(system);
is_powered_on = true;

View File

@@ -7,6 +7,7 @@
#include <cinttypes>
#include <limits>
#include "common/logging/log.h"
#include "common/uint128.h"
namespace Core::Timing {
@@ -60,4 +61,9 @@ s64 nsToCycles(u64 ns) {
return (BASE_CLOCK_RATE * static_cast<s64>(ns)) / 1000000000;
}
u64 CpuCyclesToClockCycles(u64 ticks) {
const u128 temporal = Common::Multiply64Into128(ticks, CNTFREQ);
return Common::Divide128On32(temporal, static_cast<u32>(BASE_CLOCK_RATE)).first;
}
} // namespace Core::Timing

View File

@@ -11,6 +11,7 @@ namespace Core::Timing {
// The below clock rate is based on Switch's clockspeed being widely known as 1.020GHz
// The exact value used is of course unverified.
constexpr u64 BASE_CLOCK_RATE = 1019215872; // Switch clock speed is 1020MHz un/docked
constexpr u64 CNTFREQ = 19200000; // Value from fusee.
inline s64 msToCycles(int ms) {
// since ms is int there is no way to overflow
@@ -61,4 +62,6 @@ inline u64 cyclesToMs(s64 cycles) {
return cycles * 1000 / BASE_CLOCK_RATE;
}
u64 CpuCyclesToClockCycles(u64 ticks);
} // namespace Core::Timing

View File

@@ -398,8 +398,7 @@ static bool ValidCryptoRevisionString(std::string_view base, size_t begin, size_
}
void KeyManager::LoadFromFile(const std::string& filename, bool is_title_keys) {
std::ifstream file;
OpenFStream(file, filename, std::ios_base::in);
std::ifstream file(filename);
if (!file.is_open())
return;

View File

@@ -47,7 +47,7 @@ std::size_t VectorVfsFile::Write(const u8* data_, std::size_t length, std::size_
if (offset + length > data.size())
data.resize(offset + length);
const auto write = std::min(length, data.size() - offset);
std::memcpy(data.data() + offset, data_, write);
std::memcpy(data.data(), data_, write);
return write;
}

View File

@@ -67,7 +67,7 @@ static bool IsWithinTouchscreen(const Layout::FramebufferLayout& layout, unsigne
framebuffer_x >= layout.screen.left && framebuffer_x < layout.screen.right);
}
std::tuple<unsigned, unsigned> EmuWindow::ClipToTouchScreen(unsigned new_x, unsigned new_y) const {
std::tuple<unsigned, unsigned> EmuWindow::ClipToTouchScreen(unsigned new_x, unsigned new_y) {
new_x = std::max(new_x, framebuffer_layout.screen.left);
new_x = std::min(new_x, framebuffer_layout.screen.right - 1);

View File

@@ -166,7 +166,7 @@ private:
/**
* Clip the provided coordinates to be inside the touchscreen area.
*/
std::tuple<unsigned, unsigned> ClipToTouchScreen(unsigned new_x, unsigned new_y) const;
std::tuple<unsigned, unsigned> ClipToTouchScreen(unsigned new_x, unsigned new_y);
};
} // namespace Core::Frontend

View File

@@ -12,12 +12,12 @@ namespace Layout {
// Finds the largest size subrectangle contained in window area that is confined to the aspect ratio
template <class T>
static Common::Rectangle<T> MaxRectangle(Common::Rectangle<T> window_area,
float screen_aspect_ratio) {
static MathUtil::Rectangle<T> maxRectangle(MathUtil::Rectangle<T> window_area,
float screen_aspect_ratio) {
float scale = std::min(static_cast<float>(window_area.GetWidth()),
window_area.GetHeight() / screen_aspect_ratio);
return Common::Rectangle<T>{0, 0, static_cast<T>(std::round(scale)),
static_cast<T>(std::round(scale * screen_aspect_ratio))};
return MathUtil::Rectangle<T>{0, 0, static_cast<T>(std::round(scale)),
static_cast<T>(std::round(scale * screen_aspect_ratio))};
}
FramebufferLayout DefaultFrameLayout(unsigned width, unsigned height) {
@@ -29,8 +29,8 @@ FramebufferLayout DefaultFrameLayout(unsigned width, unsigned height) {
const float emulation_aspect_ratio{static_cast<float>(ScreenUndocked::Height) /
ScreenUndocked::Width};
Common::Rectangle<unsigned> screen_window_area{0, 0, width, height};
Common::Rectangle<unsigned> screen = MaxRectangle(screen_window_area, emulation_aspect_ratio);
MathUtil::Rectangle<unsigned> screen_window_area{0, 0, width, height};
MathUtil::Rectangle<unsigned> screen = maxRectangle(screen_window_area, emulation_aspect_ratio);
float window_aspect_ratio = static_cast<float>(height) / width;

View File

@@ -16,7 +16,7 @@ struct FramebufferLayout {
unsigned width{ScreenUndocked::Width};
unsigned height{ScreenUndocked::Height};
Common::Rectangle<unsigned> screen;
MathUtil::Rectangle<unsigned> screen;
/**
* Returns the ration of pixel size of the screen, compared to the native size of the undocked

View File

@@ -124,7 +124,7 @@ using AnalogDevice = InputDevice<std::tuple<float, float>>;
* Orientation is determined by right-hand rule.
* Units: deg/sec
*/
using MotionDevice = InputDevice<std::tuple<Common::Vec3<float>, Common::Vec3<float>>>;
using MotionDevice = InputDevice<std::tuple<Math::Vec3<float>, Math::Vec3<float>>>;
/**
* A touch device is an input device that returns a tuple of two floats and a bool. The floats are

View File

@@ -17,7 +17,8 @@
#include "core/hle/result.h"
#include "core/memory.h"
namespace Kernel::AddressArbiter {
namespace Kernel {
namespace AddressArbiter {
// Performs actual address waiting logic.
static ResultCode WaitForAddress(VAddr address, s64 timeout) {
@@ -175,4 +176,5 @@ ResultCode WaitForAddressIfEqual(VAddr address, s32 value, s64 timeout) {
return WaitForAddress(address, timeout);
}
} // namespace Kernel::AddressArbiter
} // namespace AddressArbiter
} // namespace Kernel

View File

@@ -8,8 +8,9 @@
union ResultCode;
namespace Kernel::AddressArbiter {
namespace Kernel {
namespace AddressArbiter {
enum class ArbitrationType {
WaitIfLessThan = 0,
DecrementAndWaitIfLessThan = 1,
@@ -28,5 +29,6 @@ ResultCode ModifyByWaitingCountAndSignalToAddressIfEqual(VAddr address, s32 valu
ResultCode WaitForAddressIfLessThan(VAddr address, s32 value, s64 timeout, bool should_decrement);
ResultCode WaitForAddressIfEqual(VAddr address, s32 value, s64 timeout);
} // namespace AddressArbiter
} // namespace Kernel::AddressArbiter
} // namespace Kernel

View File

@@ -14,7 +14,6 @@ constexpr ResultCode ERR_MAX_CONNECTIONS_REACHED{ErrorModule::Kernel, 7};
constexpr ResultCode ERR_INVALID_CAPABILITY_DESCRIPTOR{ErrorModule::Kernel, 14};
constexpr ResultCode ERR_INVALID_SIZE{ErrorModule::Kernel, 101};
constexpr ResultCode ERR_INVALID_ADDRESS{ErrorModule::Kernel, 102};
constexpr ResultCode ERR_OUT_OF_MEMORY{ErrorModule::Kernel, 104};
constexpr ResultCode ERR_HANDLE_TABLE_FULL{ErrorModule::Kernel, 105};
constexpr ResultCode ERR_INVALID_ADDRESS_STATE{ErrorModule::Kernel, 106};
constexpr ResultCode ERR_INVALID_MEMORY_PERMISSIONS{ErrorModule::Kernel, 108};

View File

@@ -14,47 +14,32 @@
namespace Kernel {
namespace {
constexpr u16 GetSlot(Handle handle) {
return static_cast<u16>(handle >> 15);
return handle >> 15;
}
constexpr u16 GetGeneration(Handle handle) {
return static_cast<u16>(handle & 0x7FFF);
return handle & 0x7FFF;
}
} // Anonymous namespace
HandleTable::HandleTable() {
next_generation = 1;
Clear();
}
HandleTable::~HandleTable() = default;
ResultCode HandleTable::SetSize(s32 handle_table_size) {
if (static_cast<u32>(handle_table_size) > MAX_COUNT) {
return ERR_OUT_OF_MEMORY;
}
// Values less than or equal to zero indicate to use the maximum allowable
// size for the handle table in the actual kernel, so we ignore the given
// value in that case, since we assume this by default unless this function
// is called.
if (handle_table_size > 0) {
table_size = static_cast<u16>(handle_table_size);
}
return RESULT_SUCCESS;
}
ResultVal<Handle> HandleTable::Create(SharedPtr<Object> obj) {
DEBUG_ASSERT(obj != nullptr);
const u16 slot = next_free_slot;
if (slot >= table_size) {
u16 slot = next_free_slot;
if (slot >= generations.size()) {
LOG_ERROR(Kernel, "Unable to allocate Handle, too many slots in use.");
return ERR_HANDLE_TABLE_FULL;
}
next_free_slot = generations[slot];
const u16 generation = next_generation++;
u16 generation = next_generation++;
// Overflow count so it fits in the 15 bits dedicated to the generation in the handle.
// Horizon OS uses zero to represent an invalid handle, so skip to 1.
@@ -79,11 +64,10 @@ ResultVal<Handle> HandleTable::Duplicate(Handle handle) {
}
ResultCode HandleTable::Close(Handle handle) {
if (!IsValid(handle)) {
if (!IsValid(handle))
return ERR_INVALID_HANDLE;
}
const u16 slot = GetSlot(handle);
u16 slot = GetSlot(handle);
objects[slot] = nullptr;
@@ -93,10 +77,10 @@ ResultCode HandleTable::Close(Handle handle) {
}
bool HandleTable::IsValid(Handle handle) const {
const std::size_t slot = GetSlot(handle);
const u16 generation = GetGeneration(handle);
std::size_t slot = GetSlot(handle);
u16 generation = GetGeneration(handle);
return slot < table_size && objects[slot] != nullptr && generations[slot] == generation;
return slot < MAX_COUNT && objects[slot] != nullptr && generations[slot] == generation;
}
SharedPtr<Object> HandleTable::GetGeneric(Handle handle) const {
@@ -113,7 +97,7 @@ SharedPtr<Object> HandleTable::GetGeneric(Handle handle) const {
}
void HandleTable::Clear() {
for (u16 i = 0; i < table_size; ++i) {
for (u16 i = 0; i < MAX_COUNT; ++i) {
generations[i] = i + 1;
objects[i] = nullptr;
}

View File

@@ -49,20 +49,6 @@ public:
HandleTable();
~HandleTable();
/**
* Sets the number of handles that may be in use at one time
* for this handle table.
*
* @param handle_table_size The desired size to limit the handle table to.
*
* @returns an error code indicating if initialization was successful.
* If initialization was not successful, then ERR_OUT_OF_MEMORY
* will be returned.
*
* @pre handle_table_size must be within the range [0, 1024]
*/
ResultCode SetSize(s32 handle_table_size);
/**
* Allocates a handle for the given object.
* @return The created Handle or one of the following errors:
@@ -117,21 +103,14 @@ private:
*/
std::array<u16, MAX_COUNT> generations;
/**
* The limited size of the handle table. This can be specified by process
* capabilities in order to restrict the overall number of handles that
* can be created in a process instance
*/
u16 table_size = static_cast<u16>(MAX_COUNT);
/**
* Global counter of the number of created handles. Stored in `generations` when a handle is
* created, and wraps around to 1 when it hits 0x8000.
*/
u16 next_generation = 1;
u16 next_generation;
/// Head of the free slots linked list.
u16 next_free_slot = 0;
u16 next_free_slot;
};
} // namespace Kernel

View File

@@ -99,13 +99,7 @@ ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) {
vm_manager.Reset(metadata.GetAddressSpaceType());
const auto& caps = metadata.GetKernelCapabilities();
const auto capability_init_result =
capabilities.InitializeForUserProcess(caps.data(), caps.size(), vm_manager);
if (capability_init_result.IsError()) {
return capability_init_result;
}
return handle_table.SetSize(capabilities.GetHandleTableSize());
return capabilities.InitializeForUserProcess(caps.data(), caps.size(), vm_manager);
}
void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) {

View File

@@ -96,7 +96,7 @@ void ProcessCapabilities::InitializeForMetadatalessProcess() {
interrupt_capabilities.set();
// Allow using the maximum possible amount of handles
handle_table_size = static_cast<s32>(HandleTable::MAX_COUNT);
handle_table_size = static_cast<u32>(HandleTable::MAX_COUNT);
// Allow all debugging capabilities.
is_debuggable = true;
@@ -337,7 +337,7 @@ ResultCode ProcessCapabilities::HandleHandleTableFlags(u32 flags) {
return ERR_RESERVED_VALUE;
}
handle_table_size = static_cast<s32>((flags >> 16) & 0x3FF);
handle_table_size = (flags >> 16) & 0x3FF;
return RESULT_SUCCESS;
}

View File

@@ -156,7 +156,7 @@ public:
}
/// Gets the number of total allowable handles for the process' handle table.
s32 GetHandleTableSize() const {
u32 GetHandleTableSize() const {
return handle_table_size;
}
@@ -252,7 +252,7 @@ private:
u64 core_mask = 0;
u64 priority_mask = 0;
s32 handle_table_size = 0;
u32 handle_table_size = 0;
u32 kernel_version = 0;
ProgramType program_type = ProgramType::SysModule;

View File

@@ -262,20 +262,20 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_Audio, "called");
u64 buffer_sz = Common::AlignUp(4 * params.mix_buffer_count, 0x40);
buffer_sz += params.submix_count * 1024;
buffer_sz += 0x940 * (params.submix_count + 1);
buffer_sz += params.unknown_c * 1024;
buffer_sz += 0x940 * (params.unknown_c + 1);
buffer_sz += 0x3F0 * params.voice_count;
buffer_sz += Common::AlignUp(8 * (params.submix_count + 1), 0x10);
buffer_sz += Common::AlignUp(8 * (params.unknown_c + 1), 0x10);
buffer_sz += Common::AlignUp(8 * params.voice_count, 0x10);
buffer_sz += Common::AlignUp(
(0x3C0 * (params.sink_count + params.submix_count) + 4 * params.sample_count) *
(params.mix_buffer_count + 6),
0x40);
buffer_sz +=
Common::AlignUp((0x3C0 * (params.sink_count + params.unknown_c) + 4 * params.sample_count) *
(params.mix_buffer_count + 6),
0x40);
if (IsFeatureSupported(AudioFeatures::Splitter, params.revision)) {
const u32 count = params.submix_count + 1;
u32 count = params.unknown_c + 1;
u64 node_count = Common::AlignUp(count, 0x40);
const u64 node_state_buffer_sz =
u64 node_state_buffer_sz =
4 * (node_count * node_count) + 0xC * node_count + 2 * (node_count / 8);
u64 edge_matrix_buffer_sz = 0;
node_count = Common::AlignUp(count * count, 0x40);
@@ -289,19 +289,19 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
buffer_sz += 0x20 * (params.effect_count + 4 * params.voice_count) + 0x50;
if (IsFeatureSupported(AudioFeatures::Splitter, params.revision)) {
buffer_sz += 0xE0 * params.num_splitter_send_channels;
buffer_sz += 0xE0 * params.unknown_2c;
buffer_sz += 0x20 * params.splitter_count;
buffer_sz += Common::AlignUp(4 * params.num_splitter_send_channels, 0x10);
buffer_sz += Common::AlignUp(4 * params.unknown_2c, 0x10);
}
buffer_sz = Common::AlignUp(buffer_sz, 0x40) + 0x170 * params.sink_count;
u64 output_sz = buffer_sz + 0x280 * params.sink_count + 0x4B0 * params.effect_count +
((params.voice_count * 256) | 0x40);
if (params.performance_frame_count >= 1) {
if (params.unknown_1c >= 1) {
output_sz = Common::AlignUp(((16 * params.sink_count + 16 * params.effect_count +
16 * params.voice_count + 16) +
0x658) *
(params.performance_frame_count + 1) +
(params.unknown_1c + 1) +
0xc0,
0x40) +
output_sz;

View File

@@ -23,7 +23,7 @@ u32 nvdisp_disp0::ioctl(Ioctl command, const std::vector<u8>& input, std::vector
void nvdisp_disp0::flip(u32 buffer_handle, u32 offset, u32 format, u32 width, u32 height,
u32 stride, NVFlinger::BufferQueue::BufferTransformFlags transform,
const Common::Rectangle<int>& crop_rect) {
const MathUtil::Rectangle<int>& crop_rect) {
VAddr addr = nvmap_dev->GetObjectAddress(buffer_handle);
LOG_TRACE(Service,
"Drawing from address {:X} offset {:08X} Width {} Height {} Stride {} Format {}",

View File

@@ -25,7 +25,7 @@ public:
/// Performs a screen flip, drawing the buffer pointed to by the handle.
void flip(u32 buffer_handle, u32 offset, u32 format, u32 width, u32 height, u32 stride,
NVFlinger::BufferQueue::BufferTransformFlags transform,
const Common::Rectangle<int>& crop_rect);
const MathUtil::Rectangle<int>& crop_rect);
private:
std::shared_ptr<nvmap> nvmap_dev;

View File

@@ -63,7 +63,7 @@ const IGBPBuffer& BufferQueue::RequestBuffer(u32 slot) const {
}
void BufferQueue::QueueBuffer(u32 slot, BufferTransformFlags transform,
const Common::Rectangle<int>& crop_rect) {
const MathUtil::Rectangle<int>& crop_rect) {
auto itr = std::find_if(queue.begin(), queue.end(),
[&](const Buffer& buffer) { return buffer.slot == slot; });
ASSERT(itr != queue.end());

View File

@@ -67,14 +67,14 @@ public:
Status status = Status::Free;
IGBPBuffer igbp_buffer;
BufferTransformFlags transform;
Common::Rectangle<int> crop_rect;
MathUtil::Rectangle<int> crop_rect;
};
void SetPreallocatedBuffer(u32 slot, const IGBPBuffer& igbp_buffer);
std::optional<u32> DequeueBuffer(u32 width, u32 height);
const IGBPBuffer& RequestBuffer(u32 slot) const;
void QueueBuffer(u32 slot, BufferTransformFlags transform,
const Common::Rectangle<int>& crop_rect);
const MathUtil::Rectangle<int>& crop_rect);
std::optional<std::reference_wrapper<const Buffer>> AcquireBuffer();
void ReleaseBuffer(u32 slot);
u32 Query(QueryType type);

View File

@@ -14,12 +14,11 @@
#include "core/core_timing_util.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/readable_event.h"
#include "core/hle/kernel/writable_event.h"
#include "core/hle/service/nvdrv/devices/nvdisp_disp0.h"
#include "core/hle/service/nvdrv/nvdrv.h"
#include "core/hle/service/nvflinger/buffer_queue.h"
#include "core/hle/service/nvflinger/nvflinger.h"
#include "core/hle/service/vi/display/vi_display.h"
#include "core/hle/service/vi/layer/vi_layer.h"
#include "core/perf_stats.h"
#include "video_core/renderer_base.h"
@@ -29,12 +28,6 @@ constexpr std::size_t SCREEN_REFRESH_RATE = 60;
constexpr u64 frame_ticks = static_cast<u64>(Core::Timing::BASE_CLOCK_RATE / SCREEN_REFRESH_RATE);
NVFlinger::NVFlinger(Core::Timing::CoreTiming& core_timing) : core_timing{core_timing} {
displays.emplace_back(0, "Default");
displays.emplace_back(1, "External");
displays.emplace_back(2, "Edid");
displays.emplace_back(3, "Internal");
displays.emplace_back(4, "Null");
// Schedule the screen composition events
composition_event =
core_timing.RegisterEvent("ScreenComposition", [this](u64 userdata, int cycles_late) {
@@ -59,14 +52,13 @@ std::optional<u64> NVFlinger::OpenDisplay(std::string_view name) {
// TODO(Subv): Currently we only support the Default display.
ASSERT(name == "Default");
const auto itr =
std::find_if(displays.begin(), displays.end(),
[&](const VI::Display& display) { return display.GetName() == name; });
const auto itr = std::find_if(displays.begin(), displays.end(),
[&](const Display& display) { return display.name == name; });
if (itr == displays.end()) {
return {};
}
return itr->GetID();
return itr->id;
}
std::optional<u64> NVFlinger::CreateLayer(u64 display_id) {
@@ -76,10 +68,13 @@ std::optional<u64> NVFlinger::CreateLayer(u64 display_id) {
return {};
}
ASSERT_MSG(display->layers.empty(), "Only one layer is supported per display at the moment");
const u64 layer_id = next_layer_id++;
const u32 buffer_queue_id = next_buffer_queue_id++;
buffer_queues.emplace_back(buffer_queue_id, layer_id);
display->CreateLayer(layer_id, buffer_queues.back());
auto buffer_queue = std::make_shared<BufferQueue>(buffer_queue_id, layer_id);
display->layers.emplace_back(layer_id, buffer_queue);
buffer_queues.emplace_back(std::move(buffer_queue));
return layer_id;
}
@@ -90,7 +85,7 @@ std::optional<u32> NVFlinger::FindBufferQueueId(u64 display_id, u64 layer_id) co
return {};
}
return layer->GetBufferQueue().GetId();
return layer->buffer_queue->GetId();
}
Kernel::SharedPtr<Kernel::ReadableEvent> NVFlinger::FindVsyncEvent(u64 display_id) const {
@@ -100,29 +95,20 @@ Kernel::SharedPtr<Kernel::ReadableEvent> NVFlinger::FindVsyncEvent(u64 display_i
return nullptr;
}
return display->GetVSyncEvent();
return display->vsync_event.readable;
}
BufferQueue& NVFlinger::FindBufferQueue(u32 id) {
std::shared_ptr<BufferQueue> NVFlinger::FindBufferQueue(u32 id) const {
const auto itr = std::find_if(buffer_queues.begin(), buffer_queues.end(),
[id](const auto& queue) { return queue.GetId() == id; });
[&](const auto& queue) { return queue->GetId() == id; });
ASSERT(itr != buffer_queues.end());
return *itr;
}
const BufferQueue& NVFlinger::FindBufferQueue(u32 id) const {
const auto itr = std::find_if(buffer_queues.begin(), buffer_queues.end(),
[id](const auto& queue) { return queue.GetId() == id; });
ASSERT(itr != buffer_queues.end());
return *itr;
}
VI::Display* NVFlinger::FindDisplay(u64 display_id) {
const auto itr =
std::find_if(displays.begin(), displays.end(),
[&](const VI::Display& display) { return display.GetID() == display_id; });
Display* NVFlinger::FindDisplay(u64 display_id) {
const auto itr = std::find_if(displays.begin(), displays.end(),
[&](const Display& display) { return display.id == display_id; });
if (itr == displays.end()) {
return nullptr;
@@ -131,10 +117,9 @@ VI::Display* NVFlinger::FindDisplay(u64 display_id) {
return &*itr;
}
const VI::Display* NVFlinger::FindDisplay(u64 display_id) const {
const auto itr =
std::find_if(displays.begin(), displays.end(),
[&](const VI::Display& display) { return display.GetID() == display_id; });
const Display* NVFlinger::FindDisplay(u64 display_id) const {
const auto itr = std::find_if(displays.begin(), displays.end(),
[&](const Display& display) { return display.id == display_id; });
if (itr == displays.end()) {
return nullptr;
@@ -143,41 +128,57 @@ const VI::Display* NVFlinger::FindDisplay(u64 display_id) const {
return &*itr;
}
VI::Layer* NVFlinger::FindLayer(u64 display_id, u64 layer_id) {
Layer* NVFlinger::FindLayer(u64 display_id, u64 layer_id) {
auto* const display = FindDisplay(display_id);
if (display == nullptr) {
return nullptr;
}
return display->FindLayer(layer_id);
const auto itr = std::find_if(display->layers.begin(), display->layers.end(),
[&](const Layer& layer) { return layer.id == layer_id; });
if (itr == display->layers.end()) {
return nullptr;
}
return &*itr;
}
const VI::Layer* NVFlinger::FindLayer(u64 display_id, u64 layer_id) const {
const Layer* NVFlinger::FindLayer(u64 display_id, u64 layer_id) const {
const auto* const display = FindDisplay(display_id);
if (display == nullptr) {
return nullptr;
}
return display->FindLayer(layer_id);
const auto itr = std::find_if(display->layers.begin(), display->layers.end(),
[&](const Layer& layer) { return layer.id == layer_id; });
if (itr == display->layers.end()) {
return nullptr;
}
return &*itr;
}
void NVFlinger::Compose() {
for (auto& display : displays) {
// Trigger vsync for this display at the end of drawing
SCOPE_EXIT({ display.SignalVSyncEvent(); });
SCOPE_EXIT({ display.vsync_event.writable->Signal(); });
// Don't do anything for displays without layers.
if (!display.HasLayers())
if (display.layers.empty())
continue;
// TODO(Subv): Support more than 1 layer.
VI::Layer& layer = display.GetLayer(0);
auto& buffer_queue = layer.GetBufferQueue();
ASSERT_MSG(display.layers.size() == 1, "Max 1 layer per display is supported");
Layer& layer = display.layers[0];
auto& buffer_queue = layer.buffer_queue;
// Search for a queued buffer and acquire it
auto buffer = buffer_queue.AcquireBuffer();
auto buffer = buffer_queue->AcquireBuffer();
MicroProfileFlip();
@@ -202,8 +203,19 @@ void NVFlinger::Compose() {
igbp_buffer.width, igbp_buffer.height, igbp_buffer.stride,
buffer->get().transform, buffer->get().crop_rect);
buffer_queue.ReleaseBuffer(buffer->get().slot);
buffer_queue->ReleaseBuffer(buffer->get().slot);
}
}
Layer::Layer(u64 id, std::shared_ptr<BufferQueue> queue) : id(id), buffer_queue(std::move(queue)) {}
Layer::~Layer() = default;
Display::Display(u64 id, std::string name) : id(id), name(std::move(name)) {
auto& kernel = Core::System::GetInstance().Kernel();
vsync_event = Kernel::WritableEvent::CreateEventPair(kernel, Kernel::ResetType::Sticky,
fmt::format("Display VSync Event {}", id));
}
Display::~Display() = default;
} // namespace Service::NVFlinger

View File

@@ -4,6 +4,7 @@
#pragma once
#include <array>
#include <memory>
#include <optional>
#include <string>
@@ -25,17 +26,31 @@ class WritableEvent;
namespace Service::Nvidia {
class Module;
} // namespace Service::Nvidia
namespace Service::VI {
class Display;
class Layer;
} // namespace Service::VI
}
namespace Service::NVFlinger {
class BufferQueue;
struct Layer {
Layer(u64 id, std::shared_ptr<BufferQueue> queue);
~Layer();
u64 id;
std::shared_ptr<BufferQueue> buffer_queue;
};
struct Display {
Display(u64 id, std::string name);
~Display();
u64 id;
std::string name;
std::vector<Layer> layers;
Kernel::EventPair vsync_event;
};
class NVFlinger final {
public:
explicit NVFlinger(Core::Timing::CoreTiming& core_timing);
@@ -65,10 +80,7 @@ public:
Kernel::SharedPtr<Kernel::ReadableEvent> FindVsyncEvent(u64 display_id) const;
/// Obtains a buffer queue identified by the ID.
BufferQueue& FindBufferQueue(u32 id);
/// Obtains a buffer queue identified by the ID.
const BufferQueue& FindBufferQueue(u32 id) const;
std::shared_ptr<BufferQueue> FindBufferQueue(u32 id) const;
/// Performs a composition request to the emulated nvidia GPU and triggers the vsync events when
/// finished.
@@ -76,21 +88,27 @@ public:
private:
/// Finds the display identified by the specified ID.
VI::Display* FindDisplay(u64 display_id);
Display* FindDisplay(u64 display_id);
/// Finds the display identified by the specified ID.
const VI::Display* FindDisplay(u64 display_id) const;
const Display* FindDisplay(u64 display_id) const;
/// Finds the layer identified by the specified ID in the desired display.
VI::Layer* FindLayer(u64 display_id, u64 layer_id);
Layer* FindLayer(u64 display_id, u64 layer_id);
/// Finds the layer identified by the specified ID in the desired display.
const VI::Layer* FindLayer(u64 display_id, u64 layer_id) const;
const Layer* FindLayer(u64 display_id, u64 layer_id) const;
std::shared_ptr<Nvidia::Module> nvdrv;
std::vector<VI::Display> displays;
std::vector<BufferQueue> buffer_queues;
std::array<Display, 5> displays{{
{0, "Default"},
{1, "External"},
{2, "Edid"},
{3, "Internal"},
{4, "Null"},
}};
std::vector<std::shared_ptr<BufferQueue>> buffer_queues;
/// Id to use for the next layer that is created, this counter is shared among all displays.
u64 next_layer_id = 1;

View File

@@ -1,71 +0,0 @@
// Copyright 2019 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <utility>
#include <fmt/format.h>
#include "common/assert.h"
#include "core/core.h"
#include "core/hle/kernel/readable_event.h"
#include "core/hle/service/vi/display/vi_display.h"
#include "core/hle/service/vi/layer/vi_layer.h"
namespace Service::VI {
Display::Display(u64 id, std::string name) : id{id}, name{std::move(name)} {
auto& kernel = Core::System::GetInstance().Kernel();
vsync_event = Kernel::WritableEvent::CreateEventPair(kernel, Kernel::ResetType::Sticky,
fmt::format("Display VSync Event {}", id));
}
Display::~Display() = default;
Layer& Display::GetLayer(std::size_t index) {
return layers.at(index);
}
const Layer& Display::GetLayer(std::size_t index) const {
return layers.at(index);
}
Kernel::SharedPtr<Kernel::ReadableEvent> Display::GetVSyncEvent() const {
return vsync_event.readable;
}
void Display::SignalVSyncEvent() {
vsync_event.writable->Signal();
}
void Display::CreateLayer(u64 id, NVFlinger::BufferQueue& buffer_queue) {
// TODO(Subv): Support more than 1 layer.
ASSERT_MSG(layers.empty(), "Only one layer is supported per display at the moment");
layers.emplace_back(id, buffer_queue);
}
Layer* Display::FindLayer(u64 id) {
const auto itr = std::find_if(layers.begin(), layers.end(),
[id](const VI::Layer& layer) { return layer.GetID() == id; });
if (itr == layers.end()) {
return nullptr;
}
return &*itr;
}
const Layer* Display::FindLayer(u64 id) const {
const auto itr = std::find_if(layers.begin(), layers.end(),
[id](const VI::Layer& layer) { return layer.GetID() == id; });
if (itr == layers.end()) {
return nullptr;
}
return &*itr;
}
} // namespace Service::VI

View File

@@ -1,98 +0,0 @@
// Copyright 2019 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <string>
#include <vector>
#include "common/common_types.h"
#include "core/hle/kernel/writable_event.h"
namespace Service::NVFlinger {
class BufferQueue;
}
namespace Service::VI {
class Layer;
/// Represents a single display type
class Display {
public:
/// Constructs a display with a given unique ID and name.
///
/// @param id The unique ID for this display.
/// @param name The name for this display.
///
Display(u64 id, std::string name);
~Display();
Display(const Display&) = delete;
Display& operator=(const Display&) = delete;
Display(Display&&) = default;
Display& operator=(Display&&) = default;
/// Gets the unique ID assigned to this display.
u64 GetID() const {
return id;
}
/// Gets the name of this display
const std::string& GetName() const {
return name;
}
/// Whether or not this display has any layers added to it.
bool HasLayers() const {
return !layers.empty();
}
/// Gets a layer for this display based off an index.
Layer& GetLayer(std::size_t index);
/// Gets a layer for this display based off an index.
const Layer& GetLayer(std::size_t index) const;
/// Gets the readable vsync event.
Kernel::SharedPtr<Kernel::ReadableEvent> GetVSyncEvent() const;
/// Signals the internal vsync event.
void SignalVSyncEvent();
/// Creates and adds a layer to this display with the given ID.
///
/// @param id The ID to assign to the created layer.
/// @param buffer_queue The buffer queue for the layer instance to use.
///
void CreateLayer(u64 id, NVFlinger::BufferQueue& buffer_queue);
/// Attempts to find a layer with the given ID.
///
/// @param id The layer ID.
///
/// @returns If found, the Layer instance with the given ID.
/// If not found, then nullptr is returned.
///
Layer* FindLayer(u64 id);
/// Attempts to find a layer with the given ID.
///
/// @param id The layer ID.
///
/// @returns If found, the Layer instance with the given ID.
/// If not found, then nullptr is returned.
///
const Layer* FindLayer(u64 id) const;
private:
u64 id;
std::string name;
std::vector<Layer> layers;
Kernel::EventPair vsync_event;
};
} // namespace Service::VI

View File

@@ -1,13 +0,0 @@
// Copyright 2019 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/hle/service/vi/layer/vi_layer.h"
namespace Service::VI {
Layer::Layer(u64 id, NVFlinger::BufferQueue& queue) : id{id}, buffer_queue{queue} {}
Layer::~Layer() = default;
} // namespace Service::VI

View File

@@ -1,52 +0,0 @@
// Copyright 2019 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
namespace Service::NVFlinger {
class BufferQueue;
}
namespace Service::VI {
/// Represents a single display layer.
class Layer {
public:
/// Constructs a layer with a given ID and buffer queue.
///
/// @param id The ID to assign to this layer.
/// @param queue The buffer queue for this layer to use.
///
Layer(u64 id, NVFlinger::BufferQueue& queue);
~Layer();
Layer(const Layer&) = delete;
Layer& operator=(const Layer&) = delete;
Layer(Layer&&) = default;
Layer& operator=(Layer&&) = delete;
/// Gets the ID for this layer.
u64 GetID() const {
return id;
}
/// Gets a reference to the buffer queue this layer is using.
NVFlinger::BufferQueue& GetBufferQueue() {
return buffer_queue;
}
/// Gets a const reference to the buffer queue this layer is using.
const NVFlinger::BufferQueue& GetBufferQueue() const {
return buffer_queue;
}
private:
u64 id;
NVFlinger::BufferQueue& buffer_queue;
};
} // namespace Service::VI

View File

@@ -420,7 +420,7 @@ public:
u32_le fence_is_valid;
std::array<Fence, 2> fences;
Common::Rectangle<int> GetCropRect() const {
MathUtil::Rectangle<int> GetCropRect() const {
return {crop_left, crop_top, crop_right, crop_bottom};
}
};
@@ -525,7 +525,7 @@ private:
LOG_DEBUG(Service_VI, "called. id=0x{:08X} transaction={:X}, flags=0x{:08X}", id,
static_cast<u32>(transaction), flags);
auto& buffer_queue = nv_flinger->FindBufferQueue(id);
auto buffer_queue = nv_flinger->FindBufferQueue(id);
if (transaction == TransactionId::Connect) {
IGBPConnectRequestParcel request{ctx.ReadBuffer()};
@@ -538,7 +538,7 @@ private:
} else if (transaction == TransactionId::SetPreallocatedBuffer) {
IGBPSetPreallocatedBufferRequestParcel request{ctx.ReadBuffer()};
buffer_queue.SetPreallocatedBuffer(request.data.slot, request.buffer);
buffer_queue->SetPreallocatedBuffer(request.data.slot, request.buffer);
IGBPSetPreallocatedBufferResponseParcel response{};
ctx.WriteBuffer(response.Serialize());
@@ -546,7 +546,7 @@ private:
IGBPDequeueBufferRequestParcel request{ctx.ReadBuffer()};
const u32 width{request.data.width};
const u32 height{request.data.height};
std::optional<u32> slot = buffer_queue.DequeueBuffer(width, height);
std::optional<u32> slot = buffer_queue->DequeueBuffer(width, height);
if (slot) {
// Buffer is available
@@ -559,8 +559,8 @@ private:
[=](Kernel::SharedPtr<Kernel::Thread> thread, Kernel::HLERequestContext& ctx,
Kernel::ThreadWakeupReason reason) {
// Repeat TransactParcel DequeueBuffer when a buffer is available
auto& buffer_queue = nv_flinger->FindBufferQueue(id);
std::optional<u32> slot = buffer_queue.DequeueBuffer(width, height);
auto buffer_queue = nv_flinger->FindBufferQueue(id);
std::optional<u32> slot = buffer_queue->DequeueBuffer(width, height);
ASSERT_MSG(slot != std::nullopt, "Could not dequeue buffer.");
IGBPDequeueBufferResponseParcel response{*slot};
@@ -568,28 +568,28 @@ private:
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(RESULT_SUCCESS);
},
buffer_queue.GetWritableBufferWaitEvent());
buffer_queue->GetWritableBufferWaitEvent());
}
} else if (transaction == TransactionId::RequestBuffer) {
IGBPRequestBufferRequestParcel request{ctx.ReadBuffer()};
auto& buffer = buffer_queue.RequestBuffer(request.slot);
auto& buffer = buffer_queue->RequestBuffer(request.slot);
IGBPRequestBufferResponseParcel response{buffer};
ctx.WriteBuffer(response.Serialize());
} else if (transaction == TransactionId::QueueBuffer) {
IGBPQueueBufferRequestParcel request{ctx.ReadBuffer()};
buffer_queue.QueueBuffer(request.data.slot, request.data.transform,
request.data.GetCropRect());
buffer_queue->QueueBuffer(request.data.slot, request.data.transform,
request.data.GetCropRect());
IGBPQueueBufferResponseParcel response{1280, 720};
ctx.WriteBuffer(response.Serialize());
} else if (transaction == TransactionId::Query) {
IGBPQueryRequestParcel request{ctx.ReadBuffer()};
const u32 value =
buffer_queue.Query(static_cast<NVFlinger::BufferQueue::QueryType>(request.type));
u32 value =
buffer_queue->Query(static_cast<NVFlinger::BufferQueue::QueryType>(request.type));
IGBPQueryResponseParcel response{value};
ctx.WriteBuffer(response.Serialize());
@@ -629,12 +629,12 @@ private:
LOG_WARNING(Service_VI, "(STUBBED) called id={}, unknown={:08X}", id, unknown);
const auto& buffer_queue = nv_flinger->FindBufferQueue(id);
const auto buffer_queue = nv_flinger->FindBufferQueue(id);
// TODO(Subv): Find out what this actually is.
IPC::ResponseBuilder rb{ctx, 2, 1};
rb.Push(RESULT_SUCCESS);
rb.PushCopyObjects(buffer_queue.GetBufferWaitEvent());
rb.PushCopyObjects(buffer_queue->GetBufferWaitEvent());
}
std::shared_ptr<NVFlinger::NVFlinger> nv_flinger;
@@ -752,7 +752,6 @@ public:
{1102, nullptr, "GetDisplayResolution"},
{2010, &IManagerDisplayService::CreateManagedLayer, "CreateManagedLayer"},
{2011, nullptr, "DestroyManagedLayer"},
{2012, nullptr, "CreateStrayLayer"},
{2050, nullptr, "CreateIndirectLayer"},
{2051, nullptr, "DestroyIndirectLayer"},
{2052, nullptr, "CreateIndirectProducerEndPoint"},

View File

@@ -71,20 +71,15 @@ static void MapPages(PageTable& page_table, VAddr base, u64 size, u8* memory, Pa
FlushMode::FlushAndInvalidate);
VAddr end = base + size;
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
base + page_table.pointers.size());
while (base != end) {
ASSERT_MSG(base < page_table.pointers.size(), "out of range mapping at {:016X}", base);
std::fill(page_table.attributes.begin() + base, page_table.attributes.begin() + end, type);
page_table.attributes[base] = type;
page_table.pointers[base] = memory;
if (memory == nullptr) {
std::fill(page_table.pointers.begin() + base, page_table.pointers.begin() + end, memory);
} else {
while (base != end) {
page_table.pointers[base] = memory;
base += 1;
base += 1;
if (memory != nullptr)
memory += PAGE_SIZE;
}
}
}

View File

@@ -32,12 +32,12 @@ public:
}
void BeginTilt(int x, int y) {
mouse_origin = Common::MakeVec(x, y);
mouse_origin = Math::MakeVec(x, y);
is_tilting = true;
}
void Tilt(int x, int y) {
auto mouse_move = Common::MakeVec(x, y) - mouse_origin;
auto mouse_move = Math::MakeVec(x, y) - mouse_origin;
if (is_tilting) {
std::lock_guard<std::mutex> guard(tilt_mutex);
if (mouse_move.x == 0 && mouse_move.y == 0) {
@@ -45,7 +45,7 @@ public:
} else {
tilt_direction = mouse_move.Cast<float>();
tilt_angle =
std::clamp(tilt_direction.Normalize() * sensitivity, 0.0f, Common::PI * 0.5f);
std::clamp(tilt_direction.Normalize() * sensitivity, 0.0f, MathUtil::PI * 0.5f);
}
}
}
@@ -56,7 +56,7 @@ public:
is_tilting = false;
}
std::tuple<Common::Vec3<float>, Common::Vec3<float>> GetStatus() {
std::tuple<Math::Vec3<float>, Math::Vec3<float>> GetStatus() {
std::lock_guard<std::mutex> guard(status_mutex);
return status;
}
@@ -66,17 +66,17 @@ private:
const std::chrono::steady_clock::duration update_duration;
const float sensitivity;
Common::Vec2<int> mouse_origin;
Math::Vec2<int> mouse_origin;
std::mutex tilt_mutex;
Common::Vec2<float> tilt_direction;
Math::Vec2<float> tilt_direction;
float tilt_angle = 0;
bool is_tilting = false;
Common::Event shutdown_event;
std::tuple<Common::Vec3<float>, Common::Vec3<float>> status;
std::tuple<Math::Vec3<float>, Math::Vec3<float>> status;
std::mutex status_mutex;
// Note: always keep the thread declaration at the end so that other objects are initialized
@@ -85,8 +85,8 @@ private:
void MotionEmuThread() {
auto update_time = std::chrono::steady_clock::now();
Common::Quaternion<float> q = Common::MakeQuaternion(Common::Vec3<float>(), 0);
Common::Quaternion<float> old_q;
Math::Quaternion<float> q = MakeQuaternion(Math::Vec3<float>(), 0);
Math::Quaternion<float> old_q;
while (!shutdown_event.WaitUntil(update_time)) {
update_time += update_duration;
@@ -96,18 +96,18 @@ private:
std::lock_guard<std::mutex> guard(tilt_mutex);
// Find the quaternion describing current 3DS tilting
q = Common::MakeQuaternion(
Common::MakeVec(-tilt_direction.y, 0.0f, tilt_direction.x), tilt_angle);
q = MakeQuaternion(Math::MakeVec(-tilt_direction.y, 0.0f, tilt_direction.x),
tilt_angle);
}
auto inv_q = q.Inverse();
// Set the gravity vector in world space
auto gravity = Common::MakeVec(0.0f, -1.0f, 0.0f);
auto gravity = Math::MakeVec(0.0f, -1.0f, 0.0f);
// Find the angular rate vector in world space
auto angular_rate = ((q - old_q) * inv_q).xyz * 2;
angular_rate *= 1000 / update_millisecond / Common::PI * 180;
angular_rate *= 1000 / update_millisecond / MathUtil::PI * 180;
// Transform the two vectors from world space to 3DS space
gravity = QuaternionRotate(inv_q, gravity);
@@ -131,7 +131,7 @@ public:
device = std::make_shared<MotionEmuDevice>(update_millisecond, sensitivity);
}
std::tuple<Common::Vec3<float>, Common::Vec3<float>> GetStatus() const override {
std::tuple<Math::Vec3<float>, Math::Vec3<float>> GetStatus() const override {
return device->GetStatus();
}

View File

@@ -105,13 +105,7 @@ if (ENABLE_VULKAN)
target_sources(video_core PRIVATE
renderer_vulkan/declarations.h
renderer_vulkan/vk_device.cpp
renderer_vulkan/vk_device.h
renderer_vulkan/vk_memory_manager.cpp
renderer_vulkan/vk_memory_manager.h
renderer_vulkan/vk_resource_manager.cpp
renderer_vulkan/vk_resource_manager.h
renderer_vulkan/vk_scheduler.cpp
renderer_vulkan/vk_scheduler.h)
renderer_vulkan/vk_device.h)
target_include_directories(video_core PRIVATE ../../externals/Vulkan-Headers/include)
target_compile_definitions(video_core PRIVATE HAS_VULKAN)

View File

@@ -33,36 +33,18 @@ void DmaPusher::DispatchCalls() {
}
bool DmaPusher::Step() {
if (!ib_enable || dma_pushbuffer.empty()) {
// pushbuffer empty and IB empty or nonexistent - nothing to do
return false;
}
if (dma_get != dma_put) {
// Push buffer non-empty, read a word
const auto address = gpu.MemoryManager().GpuToCpuAddress(dma_get);
ASSERT_MSG(address, "Invalid GPU address");
const CommandList& command_list{dma_pushbuffer.front()};
const CommandListHeader& command_list_header{command_list[dma_pushbuffer_subindex++]};
GPUVAddr dma_get = command_list_header.addr;
GPUVAddr dma_put = dma_get + command_list_header.size * sizeof(u32);
bool non_main = command_list_header.is_non_main;
const CommandHeader command_header{Memory::Read32(*address)};
if (dma_pushbuffer_subindex >= command_list.size()) {
// We've gone through the current list, remove it from the queue
dma_pushbuffer.pop();
dma_pushbuffer_subindex = 0;
}
dma_get += sizeof(u32);
if (command_list_header.size == 0) {
return true;
}
// Push buffer non-empty, read a word
const auto address = gpu.MemoryManager().GpuToCpuAddress(dma_get);
ASSERT_MSG(address, "Invalid GPU address");
command_headers.resize(command_list_header.size);
Memory::ReadBlock(*address, command_headers.data(), command_list_header.size * sizeof(u32));
for (const CommandHeader& command_header : command_headers) {
if (!non_main) {
dma_mget = dma_get;
}
// now, see if we're in the middle of a command
if (dma_state.length_pending) {
@@ -109,11 +91,22 @@ bool DmaPusher::Step() {
break;
}
}
}
} else if (ib_enable && !dma_pushbuffer.empty()) {
// Current pushbuffer empty, but we have more IB entries to read
const CommandList& command_list{dma_pushbuffer.front()};
const CommandListHeader& command_list_header{command_list[dma_pushbuffer_subindex++]};
dma_get = command_list_header.addr;
dma_put = dma_get + command_list_header.size * sizeof(u32);
non_main = command_list_header.is_non_main;
if (!non_main) {
// TODO (degasus): This is dead code, as dma_mget is never read.
dma_mget = dma_put;
if (dma_pushbuffer_subindex >= command_list.size()) {
// We've gone through the current list, remove it from the queue
dma_pushbuffer.pop();
dma_pushbuffer_subindex = 0;
}
} else {
// Otherwise, pushbuffer empty and IB empty or nonexistent - nothing to do
return {};
}
return true;

View File

@@ -75,8 +75,6 @@ private:
GPU& gpu;
std::vector<CommandHeader> command_headers; ///< Buffer for list of commands fetched at once
std::queue<CommandList> dma_pushbuffer; ///< Queue of command lists to be processed
std::size_t dma_pushbuffer_subindex{}; ///< Index within a command list within the pushbuffer
@@ -91,8 +89,11 @@ private:
DmaState dma_state{};
bool dma_increment_once{};
GPUVAddr dma_put{}; ///< pushbuffer current end address
GPUVAddr dma_get{}; ///< pushbuffer current read address
GPUVAddr dma_mget{}; ///< main pushbuffer last read address
bool ib_enable{true}; ///< IB mode enabled
bool non_main{}; ///< non-main pushbuffer active
};
} // namespace Tegra

View File

@@ -44,10 +44,10 @@ void Fermi2D::HandleSurfaceCopy() {
const u32 src_blit_y2{
static_cast<u32>((regs.blit_src_y + (regs.blit_dst_height * regs.blit_dv_dy)) >> 32)};
const Common::Rectangle<u32> src_rect{src_blit_x1, src_blit_y1, src_blit_x2, src_blit_y2};
const Common::Rectangle<u32> dst_rect{regs.blit_dst_x, regs.blit_dst_y,
regs.blit_dst_x + regs.blit_dst_width,
regs.blit_dst_y + regs.blit_dst_height};
const MathUtil::Rectangle<u32> src_rect{src_blit_x1, src_blit_y1, src_blit_x2, src_blit_y2};
const MathUtil::Rectangle<u32> dst_rect{regs.blit_dst_x, regs.blit_dst_y,
regs.blit_dst_x + regs.blit_dst_width,
regs.blit_dst_y + regs.blit_dst_height};
if (!rasterizer.AccelerateSurfaceCopy(regs.src, regs.dst, src_rect, dst_rect)) {
UNIMPLEMENTED();

View File

@@ -2,7 +2,6 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/memory.h"
@@ -12,9 +11,9 @@
namespace Tegra::Engines {
KeplerMemory::KeplerMemory(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
KeplerMemory::KeplerMemory(VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager)
: system{system}, memory_manager(memory_manager), rasterizer{rasterizer} {}
: memory_manager(memory_manager), rasterizer{rasterizer} {}
KeplerMemory::~KeplerMemory() = default;
@@ -51,7 +50,7 @@ void KeplerMemory::ProcessData(u32 data) {
rasterizer.InvalidateRegion(*dest_address, sizeof(u32));
Memory::Write32(*dest_address, data);
system.GPU().Maxwell3D().dirty_flags.OnMemoryWrite();
Core::System::GetInstance().GPU().Maxwell3D().dirty_flags.OnMemoryWrite();
state.write_offset++;
}

View File

@@ -5,16 +5,13 @@
#pragma once
#include <array>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
namespace Core {
class System;
}
namespace VideoCore {
class RasterizerInterface;
}
@@ -26,8 +23,7 @@ namespace Tegra::Engines {
class KeplerMemory final {
public:
KeplerMemory(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager);
KeplerMemory(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager);
~KeplerMemory();
/// Write the value to the register identified by method.
@@ -80,7 +76,6 @@ public:
} state{};
private:
Core::System& system;
MemoryManager& memory_manager;
VideoCore::RasterizerInterface& rasterizer;

View File

@@ -19,10 +19,8 @@ namespace Tegra::Engines {
/// First register id that is actually a Macro call.
constexpr u32 MacroRegistersStart = 0xE00;
Maxwell3D::Maxwell3D(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager)
: memory_manager(memory_manager), system{system}, rasterizer{rasterizer},
macro_interpreter(*this) {
Maxwell3D::Maxwell3D(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager)
: memory_manager(memory_manager), rasterizer{rasterizer}, macro_interpreter(*this) {
InitializeRegisterDefaults();
}
@@ -105,25 +103,23 @@ void Maxwell3D::CallMacroMethod(u32 method, std::vector<u32> parameters) {
}
void Maxwell3D::CallMethod(const GPU::MethodCall& method_call) {
auto debug_context = system.GetGPUDebugContext();
const u32 method = method_call.method;
auto debug_context = Core::System::GetInstance().GetGPUDebugContext();
// It is an error to write to a register other than the current macro's ARG register before it
// has finished execution.
if (executing_macro != 0) {
ASSERT(method == executing_macro + 1);
ASSERT(method_call.method == executing_macro + 1);
}
// Methods after 0xE00 are special, they're actually triggers for some microcode that was
// uploaded to the GPU during initialization.
if (method >= MacroRegistersStart) {
if (method_call.method >= MacroRegistersStart) {
// We're trying to execute a macro
if (executing_macro == 0) {
// A macro call must begin by writing the macro method's register, not its argument.
ASSERT_MSG((method % 2) == 0,
ASSERT_MSG((method_call.method % 2) == 0,
"Can't start macro execution by writing to the ARGS register");
executing_macro = method;
executing_macro = method_call.method;
}
macro_params.push_back(method_call.argument);
@@ -135,62 +131,66 @@ void Maxwell3D::CallMethod(const GPU::MethodCall& method_call) {
return;
}
ASSERT_MSG(method < Regs::NUM_REGS,
ASSERT_MSG(method_call.method < Regs::NUM_REGS,
"Invalid Maxwell3D register, increase the size of the Regs structure");
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::MaxwellCommandLoaded, nullptr);
}
if (regs.reg_array[method] != method_call.argument) {
regs.reg_array[method] = method_call.argument;
if (regs.reg_array[method_call.method] != method_call.argument) {
regs.reg_array[method_call.method] = method_call.argument;
// Color buffers
constexpr u32 first_rt_reg = MAXWELL3D_REG_INDEX(rt);
constexpr u32 registers_per_rt = sizeof(regs.rt[0]) / sizeof(u32);
if (method >= first_rt_reg &&
method < first_rt_reg + registers_per_rt * Regs::NumRenderTargets) {
const std::size_t rt_index = (method - first_rt_reg) / registers_per_rt;
dirty_flags.color_buffer.set(rt_index);
if (method_call.method >= first_rt_reg &&
method_call.method < first_rt_reg + registers_per_rt * Regs::NumRenderTargets) {
const std::size_t rt_index = (method_call.method - first_rt_reg) / registers_per_rt;
dirty_flags.color_buffer |= 1u << static_cast<u32>(rt_index);
}
// Zeta buffer
constexpr u32 registers_in_zeta = sizeof(regs.zeta) / sizeof(u32);
if (method == MAXWELL3D_REG_INDEX(zeta_enable) ||
method == MAXWELL3D_REG_INDEX(zeta_width) ||
method == MAXWELL3D_REG_INDEX(zeta_height) ||
(method >= MAXWELL3D_REG_INDEX(zeta) &&
method < MAXWELL3D_REG_INDEX(zeta) + registers_in_zeta)) {
if (method_call.method == MAXWELL3D_REG_INDEX(zeta_enable) ||
method_call.method == MAXWELL3D_REG_INDEX(zeta_width) ||
method_call.method == MAXWELL3D_REG_INDEX(zeta_height) ||
(method_call.method >= MAXWELL3D_REG_INDEX(zeta) &&
method_call.method < MAXWELL3D_REG_INDEX(zeta) + registers_in_zeta)) {
dirty_flags.zeta_buffer = true;
}
// Shader
constexpr u32 shader_registers_count =
sizeof(regs.shader_config[0]) * Regs::MaxShaderProgram / sizeof(u32);
if (method >= MAXWELL3D_REG_INDEX(shader_config[0]) &&
method < MAXWELL3D_REG_INDEX(shader_config[0]) + shader_registers_count) {
if (method_call.method >= MAXWELL3D_REG_INDEX(shader_config[0]) &&
method_call.method < MAXWELL3D_REG_INDEX(shader_config[0]) + shader_registers_count) {
dirty_flags.shaders = true;
}
// Vertex format
if (method >= MAXWELL3D_REG_INDEX(vertex_attrib_format) &&
method < MAXWELL3D_REG_INDEX(vertex_attrib_format) + regs.vertex_attrib_format.size()) {
if (method_call.method >= MAXWELL3D_REG_INDEX(vertex_attrib_format) &&
method_call.method <
MAXWELL3D_REG_INDEX(vertex_attrib_format) + regs.vertex_attrib_format.size()) {
dirty_flags.vertex_attrib_format = true;
}
// Vertex buffer
if (method >= MAXWELL3D_REG_INDEX(vertex_array) &&
method < MAXWELL3D_REG_INDEX(vertex_array) + 4 * 32) {
dirty_flags.vertex_array.set((method - MAXWELL3D_REG_INDEX(vertex_array)) >> 2);
} else if (method >= MAXWELL3D_REG_INDEX(vertex_array_limit) &&
method < MAXWELL3D_REG_INDEX(vertex_array_limit) + 2 * 32) {
dirty_flags.vertex_array.set((method - MAXWELL3D_REG_INDEX(vertex_array_limit)) >> 1);
} else if (method >= MAXWELL3D_REG_INDEX(instanced_arrays) &&
method < MAXWELL3D_REG_INDEX(instanced_arrays) + 32) {
dirty_flags.vertex_array.set(method - MAXWELL3D_REG_INDEX(instanced_arrays));
if (method_call.method >= MAXWELL3D_REG_INDEX(vertex_array) &&
method_call.method < MAXWELL3D_REG_INDEX(vertex_array) + 4 * 32) {
dirty_flags.vertex_array |=
1u << ((method_call.method - MAXWELL3D_REG_INDEX(vertex_array)) >> 2);
} else if (method_call.method >= MAXWELL3D_REG_INDEX(vertex_array_limit) &&
method_call.method < MAXWELL3D_REG_INDEX(vertex_array_limit) + 2 * 32) {
dirty_flags.vertex_array |=
1u << ((method_call.method - MAXWELL3D_REG_INDEX(vertex_array_limit)) >> 1);
} else if (method_call.method >= MAXWELL3D_REG_INDEX(instanced_arrays) &&
method_call.method < MAXWELL3D_REG_INDEX(instanced_arrays) + 32) {
dirty_flags.vertex_array |=
1u << (method_call.method - MAXWELL3D_REG_INDEX(instanced_arrays));
}
}
switch (method) {
switch (method_call.method) {
case MAXWELL3D_REG_INDEX(macros.data): {
ProcessMacroUpload(method_call.argument);
break;
@@ -317,7 +317,7 @@ void Maxwell3D::ProcessQueryGet() {
LongQueryResult query_result{};
query_result.value = result;
// TODO(Subv): Generate a real GPU timestamp and write it here instead of CoreTiming
query_result.timestamp = system.CoreTiming().GetTicks();
query_result.timestamp = Core::System::GetInstance().CoreTiming().GetTicks();
Memory::WriteBlock(*address, &query_result, sizeof(query_result));
}
dirty_flags.OnMemoryWrite();
@@ -334,7 +334,7 @@ void Maxwell3D::DrawArrays() {
regs.vertex_buffer.count);
ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?");
auto debug_context = system.GetGPUDebugContext();
auto debug_context = Core::System::GetInstance().GetGPUDebugContext();
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::IncomingPrimitiveBatch, nullptr);

View File

@@ -5,10 +5,8 @@
#pragma once
#include <array>
#include <bitset>
#include <unordered_map>
#include <vector>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_funcs.h"
@@ -19,10 +17,6 @@
#include "video_core/memory_manager.h"
#include "video_core/textures/texture.h"
namespace Core {
class System;
}
namespace VideoCore {
class RasterizerInterface;
}
@@ -34,8 +28,7 @@ namespace Tegra::Engines {
class Maxwell3D final {
public:
explicit Maxwell3D(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager);
explicit Maxwell3D(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager);
~Maxwell3D() = default;
/// Register structure of the Maxwell3D engine.
@@ -505,7 +498,7 @@ public:
f32 translate_z;
INSERT_PADDING_WORDS(2);
Common::Rectangle<s32> GetRect() const {
MathUtil::Rectangle<s32> GetRect() const {
return {
GetX(), // left
GetY() + GetHeight(), // top
@@ -1096,18 +1089,19 @@ public:
MemoryManager& memory_manager;
struct DirtyFlags {
std::bitset<8> color_buffer{0xFF};
std::bitset<32> vertex_array{0xFFFFFFFF};
bool vertex_attrib_format = true;
u8 color_buffer = 0xFF;
bool zeta_buffer = true;
bool shaders = true;
bool vertex_attrib_format = true;
u32 vertex_array = 0xFFFFFFFF;
void OnMemoryWrite() {
color_buffer = 0xFF;
zeta_buffer = true;
shaders = true;
color_buffer.set();
vertex_array.set();
vertex_array = 0xFFFFFFFF;
}
};
@@ -1137,8 +1131,6 @@ public:
private:
void InitializeRegisterDefaults();
Core::System& system;
VideoCore::RasterizerInterface& rasterizer;
/// Start offsets of each macro in macro_memory

View File

@@ -2,7 +2,6 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "core/core.h"
#include "core/memory.h"
#include "video_core/engines/maxwell_3d.h"
@@ -12,9 +11,8 @@
namespace Tegra::Engines {
MaxwellDMA::MaxwellDMA(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager)
: memory_manager(memory_manager), system{system}, rasterizer{rasterizer} {}
MaxwellDMA::MaxwellDMA(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager)
: memory_manager(memory_manager), rasterizer{rasterizer} {}
void MaxwellDMA::CallMethod(const GPU::MethodCall& method_call) {
ASSERT_MSG(method_call.method < Regs::NUM_REGS,
@@ -61,7 +59,7 @@ void MaxwellDMA::HandleCopy() {
}
// All copies here update the main memory, so mark all rasterizer states as invalid.
system.GPU().Maxwell3D().dirty_flags.OnMemoryWrite();
Core::System::GetInstance().GPU().Maxwell3D().dirty_flags.OnMemoryWrite();
if (regs.exec.is_dst_linear && regs.exec.is_src_linear) {
// When the enable_2d bit is disabled, the copy is performed as if we were copying a 1D

View File

@@ -5,16 +5,13 @@
#pragma once
#include <array>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
namespace Core {
class System;
}
namespace VideoCore {
class RasterizerInterface;
}
@@ -23,8 +20,7 @@ namespace Tegra::Engines {
class MaxwellDMA final {
public:
explicit MaxwellDMA(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager);
explicit MaxwellDMA(VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager);
~MaxwellDMA() = default;
/// Write the value to the register identified by method.
@@ -141,8 +137,6 @@ public:
MemoryManager& memory_manager;
private:
Core::System& system;
VideoCore::RasterizerInterface& rasterizer;
/// Performs the copy from the source buffer to the destination buffer as configured in the

View File

@@ -376,9 +376,9 @@ enum class R2pMode : u64 {
};
enum class IpaInterpMode : u64 {
Pass = 0,
Multiply = 1,
Constant = 2,
Linear = 0,
Perspective = 1,
Flat = 2,
Sc = 3,
};

View File

@@ -16,13 +16,6 @@ enum class OutputTopology : u32 {
TriangleStrip = 7,
};
enum class AttributeUse : u8 {
Unused = 0,
Constant = 1,
Perspective = 2,
ScreenLinear = 3,
};
// Documentation in:
// http://download.nvidia.com/open-gpu-doc/Shader-Program-Header/1/Shader-Program-Header.html#ImapTexture
struct Header {
@@ -91,15 +84,9 @@ struct Header {
} vtg;
struct {
INSERT_PADDING_BYTES(3); // ImapSystemValuesA
INSERT_PADDING_BYTES(1); // ImapSystemValuesB
union {
BitField<0, 2, AttributeUse> x;
BitField<2, 2, AttributeUse> y;
BitField<4, 2, AttributeUse> w;
BitField<6, 2, AttributeUse> z;
u8 raw;
} imap_generic_vector[32];
INSERT_PADDING_BYTES(3); // ImapSystemValuesA
INSERT_PADDING_BYTES(1); // ImapSystemValuesB
INSERT_PADDING_BYTES(32); // ImapGenericVector[32]
INSERT_PADDING_BYTES(2); // ImapColor
INSERT_PADDING_BYTES(2); // ImapSystemValuesC
INSERT_PADDING_BYTES(10); // ImapFixedFncTexture[10]
@@ -116,28 +103,6 @@ struct Header {
const u32 bit = render_target * 4 + component;
return omap.target & (1 << bit);
}
AttributeUse GetAttributeIndexUse(u32 attribute, u32 index) const {
return static_cast<AttributeUse>(
(imap_generic_vector[attribute].raw >> (index * 2)) & 0x03);
}
AttributeUse GetAttributeUse(u32 attribute) const {
AttributeUse result = AttributeUse::Unused;
for (u32 i = 0; i < 4; i++) {
const auto index = GetAttributeIndexUse(attribute, i);
if (index == AttributeUse::Unused) {
continue;
}
if (result == AttributeUse::Unused || result == index) {
result = index;
continue;
}
LOG_CRITICAL(HW_GPU, "Generic Attribute Conflict in Interpolation Mode");
if (index == AttributeUse::Perspective) {
result = index;
}
}
return result;
}
} ps;
};

View File

@@ -28,14 +28,14 @@ u32 FramebufferConfig::BytesPerPixel(PixelFormat format) {
UNREACHABLE();
}
GPU::GPU(Core::System& system, VideoCore::RasterizerInterface& rasterizer) {
GPU::GPU(VideoCore::RasterizerInterface& rasterizer) {
memory_manager = std::make_unique<Tegra::MemoryManager>();
dma_pusher = std::make_unique<Tegra::DmaPusher>(*this);
maxwell_3d = std::make_unique<Engines::Maxwell3D>(system, rasterizer, *memory_manager);
maxwell_3d = std::make_unique<Engines::Maxwell3D>(rasterizer, *memory_manager);
fermi_2d = std::make_unique<Engines::Fermi2D>(rasterizer, *memory_manager);
kepler_compute = std::make_unique<Engines::KeplerCompute>(*memory_manager);
maxwell_dma = std::make_unique<Engines::MaxwellDMA>(system, rasterizer, *memory_manager);
kepler_memory = std::make_unique<Engines::KeplerMemory>(system, rasterizer, *memory_manager);
maxwell_dma = std::make_unique<Engines::MaxwellDMA>(rasterizer, *memory_manager);
kepler_memory = std::make_unique<Engines::KeplerMemory>(rasterizer, *memory_manager);
}
GPU::~GPU() = default;

View File

@@ -6,15 +6,12 @@
#include <array>
#include <memory>
#include <vector>
#include "common/common_types.h"
#include "core/hle/service/nvflinger/buffer_queue.h"
#include "video_core/dma_pusher.h"
#include "video_core/memory_manager.h"
namespace Core {
class System;
}
namespace VideoCore {
class RasterizerInterface;
}
@@ -100,7 +97,7 @@ struct FramebufferConfig {
using TransformFlags = Service::NVFlinger::BufferQueue::BufferTransformFlags;
TransformFlags transform_flags;
Common::Rectangle<int> crop_rect;
MathUtil::Rectangle<int> crop_rect;
};
namespace Engines {
@@ -121,7 +118,7 @@ enum class EngineID {
class GPU final {
public:
explicit GPU(Core::System& system, VideoCore::RasterizerInterface& rasterizer);
explicit GPU(VideoCore::RasterizerInterface& rasterizer);
~GPU();
struct MethodCall {

View File

@@ -129,15 +129,6 @@ protected:
return ++modified_ticks;
}
/// Flushes the specified object, updating appropriate cache state as needed
void FlushObject(const T& object) {
if (!object->IsDirty()) {
return;
}
object->Flush();
object->MarkAsModified(false, *this);
}
private:
/// Returns a list of cached objects from the specified memory region, ordered by access time
std::vector<T> GetSortedObjectsFromRegion(VAddr addr, u64 size) {
@@ -163,6 +154,15 @@ private:
return objects;
}
/// Flushes the specified object, updating appropriate cache state as needed
void FlushObject(const T& object) {
if (!object->IsDirty()) {
return;
}
object->Flush();
object->MarkAsModified(false, *this);
}
using ObjectSet = std::set<T>;
using ObjectCache = std::unordered_map<VAddr, T>;
using IntervalCache = boost::icl::interval_map<VAddr, ObjectSet>;

View File

@@ -47,8 +47,8 @@ public:
/// Attempt to use a faster method to perform a surface copy
virtual bool AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect) {
const MathUtil::Rectangle<u32>& src_rect,
const MathUtil::Rectangle<u32>& dst_rect) {
return false;
}

View File

@@ -200,7 +200,7 @@ GLuint RasterizerOpenGL::SetupVertexFormat() {
}
// Rebinding the VAO invalidates the vertex buffer bindings.
gpu.dirty_flags.vertex_array.set();
gpu.dirty_flags.vertex_array = 0xFFFFFFFF;
state.draw.vertex_array = vao_entry.handle;
return vao_entry.handle;
@@ -210,14 +210,14 @@ void RasterizerOpenGL::SetupVertexBuffer(GLuint vao) {
auto& gpu = Core::System::GetInstance().GPU().Maxwell3D();
const auto& regs = gpu.regs;
if (gpu.dirty_flags.vertex_array.none())
if (!gpu.dirty_flags.vertex_array)
return;
MICROPROFILE_SCOPE(OpenGL_VB);
// Upload all guest vertex arrays sequentially to our buffer
for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) {
if (!gpu.dirty_flags.vertex_array[index])
if (~gpu.dirty_flags.vertex_array & (1u << index))
continue;
const auto& vertex_array = regs.vertex_array[index];
@@ -244,7 +244,7 @@ void RasterizerOpenGL::SetupVertexBuffer(GLuint vao) {
}
}
gpu.dirty_flags.vertex_array.reset();
gpu.dirty_flags.vertex_array = 0;
}
DrawParameters RasterizerOpenGL::SetupDraw() {
@@ -488,13 +488,13 @@ std::pair<bool, bool> RasterizerOpenGL::ConfigureFramebuffers(
OpenGLState& current_state, bool using_color_fb, bool using_depth_fb, bool preserve_contents,
std::optional<std::size_t> single_color_target) {
MICROPROFILE_SCOPE(OpenGL_Framebuffer);
auto& gpu = Core::System::GetInstance().GPU().Maxwell3D();
const auto& gpu = Core::System::GetInstance().GPU().Maxwell3D();
const auto& regs = gpu.regs;
const FramebufferConfigState fb_config_state{using_color_fb, using_depth_fb, preserve_contents,
single_color_target};
if (fb_config_state == current_framebuffer_config_state &&
gpu.dirty_flags.color_buffer.none() && !gpu.dirty_flags.zeta_buffer) {
if (fb_config_state == current_framebuffer_config_state && gpu.dirty_flags.color_buffer == 0 &&
!gpu.dirty_flags.zeta_buffer) {
// Only skip if the previous ConfigureFramebuffers call was from the same kind (multiple or
// single color targets). This is done because the guest registers may not change but the
// host framebuffer may contain different attachments
@@ -721,10 +721,10 @@ void RasterizerOpenGL::DrawArrays() {
// Add space for at least 18 constant buffers
buffer_size += Maxwell::MaxConstBuffers * (MaxConstbufferSize + uniform_buffer_alignment);
const bool invalidate = buffer_cache.Map(buffer_size);
bool invalidate = buffer_cache.Map(buffer_size);
if (invalidate) {
// As all cached buffers are invalidated, we need to recheck their state.
gpu.dirty_flags.vertex_array.set();
gpu.dirty_flags.vertex_array = 0xFFFFFFFF;
}
const GLuint vao = SetupVertexFormat();
@@ -738,13 +738,9 @@ void RasterizerOpenGL::DrawArrays() {
shader_program_manager->ApplyTo(state);
state.Apply();
res_cache.SignalPreDrawCall();
// Execute draw call
params.DispatchDraw();
res_cache.SignalPostDrawCall();
// Disable scissor test
state.viewports[0].scissor.enabled = false;
@@ -783,8 +779,8 @@ void RasterizerOpenGL::FlushAndInvalidateRegion(VAddr addr, u64 size) {
bool RasterizerOpenGL::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect) {
const MathUtil::Rectangle<u32>& src_rect,
const MathUtil::Rectangle<u32>& dst_rect) {
MICROPROFILE_SCOPE(OpenGL_Blits);
res_cache.FermiCopySurface(src, dst, src_rect, dst_rect);
return true;
@@ -1038,7 +1034,7 @@ void RasterizerOpenGL::SyncViewport(OpenGLState& current_state) {
for (std::size_t i = 0; i < viewport_count; i++) {
auto& viewport = current_state.viewports[i];
const auto& src = regs.viewports[i];
const Common::Rectangle<s32> viewport_rect{regs.viewport_transform[i].GetRect()};
const MathUtil::Rectangle<s32> viewport_rect{regs.viewport_transform[i].GetRect()};
viewport.x = viewport_rect.left;
viewport.y = viewport_rect.bottom;
viewport.width = viewport_rect.GetWidth();

View File

@@ -62,8 +62,8 @@ public:
void FlushAndInvalidateRegion(VAddr addr, u64 size) override;
bool AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect) override;
const MathUtil::Rectangle<u32>& src_rect,
const MathUtil::Rectangle<u32>& dst_rect) override;
bool AccelerateDisplay(const Tegra::FramebufferConfig& config, VAddr framebuffer_addr,
u32 pixel_stride) override;
bool AccelerateDrawBatch(bool is_indexed) override;

View File

@@ -3,7 +3,6 @@
// Refer to the license.txt file included.
#include <algorithm>
#include <optional>
#include <glad/glad.h>
#include "common/alignment.h"
@@ -400,7 +399,7 @@ static const FormatTuple& GetFormatTuple(PixelFormat pixel_format, ComponentType
return format;
}
Common::Rectangle<u32> SurfaceParams::GetRect(u32 mip_level) const {
MathUtil::Rectangle<u32> SurfaceParams::GetRect(u32 mip_level) const {
u32 actual_height{std::max(1U, unaligned_height >> mip_level)};
if (IsPixelFormatASTC(pixel_format)) {
// ASTC formats must stop at the ATSC block size boundary
@@ -424,7 +423,7 @@ void SwizzleFunc(const MortonSwizzleMode& mode, const SurfaceParams& params,
for (u32 i = 0; i < params.depth; i++) {
MortonSwizzle(mode, params.pixel_format, params.MipWidth(mip_level),
params.MipBlockHeight(mip_level), params.MipHeight(mip_level),
params.MipBlockDepth(mip_level), 1, params.tile_width_spacing,
params.MipBlockDepth(mip_level), params.tile_width_spacing, 1,
gl_buffer.data() + offset_gl, gl_size, params.addr + offset);
offset += layer_size;
offset_gl += gl_size;
@@ -550,8 +549,6 @@ CachedSurface::CachedSurface(const SurfaceParams& params)
// alternatives. This signals a bug on those functions.
const auto width = static_cast<GLsizei>(params.MipWidth(0));
const auto height = static_cast<GLsizei>(params.MipHeight(0));
memory_size = params.MemorySize();
reinterpreted = false;
const auto& format_tuple = GetFormatTuple(params.pixel_format, params.component_type);
gl_internal_format = format_tuple.internal_format;
@@ -965,31 +962,30 @@ Surface RasterizerCacheOpenGL::GetColorBufferSurface(std::size_t index, bool pre
auto& gpu{Core::System::GetInstance().GPU().Maxwell3D()};
const auto& regs{gpu.regs};
if (!gpu.dirty_flags.color_buffer[index]) {
if ((gpu.dirty_flags.color_buffer & (1u << static_cast<u32>(index))) == 0) {
return last_color_buffers[index];
}
gpu.dirty_flags.color_buffer.reset(index);
gpu.dirty_flags.color_buffer &= ~(1u << static_cast<u32>(index));
ASSERT(index < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets);
if (index >= regs.rt_control.count) {
return current_color_buffers[index] = {};
return last_color_buffers[index] = {};
}
if (regs.rt[index].Address() == 0 || regs.rt[index].format == Tegra::RenderTargetFormat::NONE) {
return current_color_buffers[index] = {};
return last_color_buffers[index] = {};
}
const SurfaceParams color_params{SurfaceParams::CreateForFramebuffer(index)};
return current_color_buffers[index] = GetSurface(color_params, preserve_contents);
return last_color_buffers[index] = GetSurface(color_params, preserve_contents);
}
void RasterizerCacheOpenGL::LoadSurface(const Surface& surface) {
surface->LoadGLBuffer();
surface->UploadGLTexture(read_framebuffer.handle, draw_framebuffer.handle);
surface->MarkAsModified(false, *this);
surface->MarkForReload(false);
}
Surface RasterizerCacheOpenGL::GetSurface(const SurfaceParams& params, bool preserve_contents) {
@@ -1001,23 +997,18 @@ Surface RasterizerCacheOpenGL::GetSurface(const SurfaceParams& params, bool pres
Surface surface{TryGet(params.addr)};
if (surface) {
if (surface->GetSurfaceParams().IsCompatibleSurface(params)) {
// Use the cached surface as-is unless it's not synced with memory
if (surface->MustReload())
LoadSurface(surface);
// Use the cached surface as-is
return surface;
} else if (preserve_contents) {
// If surface parameters changed and we care about keeping the previous data, recreate
// the surface from the old one
Surface new_surface{RecreateSurface(surface, params)};
UnregisterSurface(surface);
Unregister(surface);
Register(new_surface);
if (new_surface->IsUploaded()) {
RegisterReinterpretSurface(new_surface);
}
return new_surface;
} else {
// Delete the old surface before creating a new one to prevent collisions.
UnregisterSurface(surface);
Unregister(surface);
}
}
@@ -1071,8 +1062,8 @@ void RasterizerCacheOpenGL::FastLayeredCopySurface(const Surface& src_surface,
}
static bool BlitSurface(const Surface& src_surface, const Surface& dst_surface,
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect, GLuint read_fb_handle,
const MathUtil::Rectangle<u32>& src_rect,
const MathUtil::Rectangle<u32>& dst_rect, GLuint read_fb_handle,
GLuint draw_fb_handle, GLenum src_attachment = 0, GLenum dst_attachment = 0,
std::size_t cubemap_face = 0) {
@@ -1202,7 +1193,7 @@ static bool BlitSurface(const Surface& src_surface, const Surface& dst_surface,
void RasterizerCacheOpenGL::FermiCopySurface(
const Tegra::Engines::Fermi2D::Regs::Surface& src_config,
const Tegra::Engines::Fermi2D::Regs::Surface& dst_config,
const Common::Rectangle<u32>& src_rect, const Common::Rectangle<u32>& dst_rect) {
const MathUtil::Rectangle<u32>& src_rect, const MathUtil::Rectangle<u32>& dst_rect) {
const auto& src_params = SurfaceParams::CreateForFermiCopySurface(src_config);
const auto& dst_params = SurfaceParams::CreateForFermiCopySurface(dst_config);
@@ -1266,11 +1257,7 @@ Surface RasterizerCacheOpenGL::RecreateSurface(const Surface& old_surface,
case SurfaceTarget::TextureCubemap:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubeArray:
if (old_params.pixel_format == new_params.pixel_format)
FastLayeredCopySurface(old_surface, new_surface);
else {
AccurateCopySurface(old_surface, new_surface);
}
FastLayeredCopySurface(old_surface, new_surface);
break;
default:
LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}",
@@ -1299,107 +1286,4 @@ Surface RasterizerCacheOpenGL::TryGetReservedSurface(const SurfaceParams& params
return {};
}
static std::optional<u32> TryFindBestMipMap(std::size_t memory, const SurfaceParams params,
u32 height) {
for (u32 i = 0; i < params.max_mip_level; i++) {
if (memory == params.GetMipmapSingleSize(i) && params.MipHeight(i) == height) {
return {i};
}
}
return {};
}
static std::optional<u32> TryFindBestLayer(VAddr addr, const SurfaceParams params, u32 mipmap) {
const std::size_t size = params.LayerMemorySize();
VAddr start = params.addr + params.GetMipmapLevelOffset(mipmap);
for (u32 i = 0; i < params.depth; i++) {
if (start == addr) {
return {i};
}
start += size;
}
return {};
}
static bool LayerFitReinterpretSurface(RasterizerCacheOpenGL& cache, const Surface render_surface,
const Surface blitted_surface) {
const auto& dst_params = blitted_surface->GetSurfaceParams();
const auto& src_params = render_surface->GetSurfaceParams();
const std::size_t src_memory_size = src_params.size_in_bytes;
const std::optional<u32> level =
TryFindBestMipMap(src_memory_size, dst_params, src_params.height);
if (level.has_value()) {
if (src_params.width == dst_params.MipWidthGobAligned(*level) &&
src_params.height == dst_params.MipHeight(*level) &&
src_params.block_height >= dst_params.MipBlockHeight(*level)) {
const std::optional<u32> slot =
TryFindBestLayer(render_surface->GetAddr(), dst_params, *level);
if (slot.has_value()) {
glCopyImageSubData(render_surface->Texture().handle,
SurfaceTargetToGL(src_params.target), 0, 0, 0, 0,
blitted_surface->Texture().handle,
SurfaceTargetToGL(dst_params.target), *level, 0, 0, *slot,
dst_params.MipWidth(*level), dst_params.MipHeight(*level), 1);
blitted_surface->MarkAsModified(true, cache);
return true;
}
}
}
return false;
}
static bool IsReinterpretInvalid(const Surface render_surface, const Surface blitted_surface) {
const VAddr bound1 = blitted_surface->GetAddr() + blitted_surface->GetMemorySize();
const VAddr bound2 = render_surface->GetAddr() + render_surface->GetMemorySize();
if (bound2 > bound1)
return true;
const auto& dst_params = blitted_surface->GetSurfaceParams();
const auto& src_params = render_surface->GetSurfaceParams();
return (dst_params.component_type != src_params.component_type);
}
static bool IsReinterpretInvalidSecond(const Surface render_surface,
const Surface blitted_surface) {
const auto& dst_params = blitted_surface->GetSurfaceParams();
const auto& src_params = render_surface->GetSurfaceParams();
return (dst_params.height > src_params.height && dst_params.width > src_params.width);
}
bool RasterizerCacheOpenGL::PartialReinterpretSurface(Surface triggering_surface,
Surface intersect) {
if (IsReinterpretInvalid(triggering_surface, intersect)) {
UnregisterSurface(intersect);
return false;
}
if (!LayerFitReinterpretSurface(*this, triggering_surface, intersect)) {
if (IsReinterpretInvalidSecond(triggering_surface, intersect)) {
UnregisterSurface(intersect);
return false;
}
FlushObject(intersect);
FlushObject(triggering_surface);
intersect->MarkForReload(true);
}
return true;
}
void RasterizerCacheOpenGL::SignalPreDrawCall() {
if (texception && GLAD_GL_ARB_texture_barrier) {
glTextureBarrier();
}
texception = false;
}
void RasterizerCacheOpenGL::SignalPostDrawCall() {
for (u32 i = 0; i < Maxwell::NumRenderTargets; i++) {
if (current_color_buffers[i] != nullptr) {
Surface intersect = CollideOnReinterpretedSurface(current_color_buffers[i]->GetAddr());
if (intersect != nullptr) {
PartialReinterpretSurface(current_color_buffers[i], intersect);
texception = true;
}
}
}
}
} // namespace OpenGL

View File

@@ -28,13 +28,12 @@ namespace OpenGL {
class CachedSurface;
using Surface = std::shared_ptr<CachedSurface>;
using SurfaceSurfaceRect_Tuple = std::tuple<Surface, Surface, Common::Rectangle<u32>>;
using SurfaceSurfaceRect_Tuple = std::tuple<Surface, Surface, MathUtil::Rectangle<u32>>;
using SurfaceTarget = VideoCore::Surface::SurfaceTarget;
using SurfaceType = VideoCore::Surface::SurfaceType;
using PixelFormat = VideoCore::Surface::PixelFormat;
using ComponentType = VideoCore::Surface::ComponentType;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
struct SurfaceParams {
enum class SurfaceClass {
@@ -72,7 +71,7 @@ struct SurfaceParams {
}
/// Returns the rectangle corresponding to this surface
Common::Rectangle<u32> GetRect(u32 mip_level = 0) const;
MathUtil::Rectangle<u32> GetRect(u32 mip_level = 0) const;
/// Returns the total size of this surface in bytes, adjusted for compression
std::size_t SizeInBytesRaw(bool ignore_tiled = false) const {
@@ -141,18 +140,10 @@ struct SurfaceParams {
return offset;
}
std::size_t GetMipmapSingleSize(u32 mip_level) const {
return InnerMipmapMemorySize(mip_level, false, is_layered);
}
u32 MipWidth(u32 mip_level) const {
return std::max(1U, width >> mip_level);
}
u32 MipWidthGobAligned(u32 mip_level) const {
return Common::AlignUp(std::max(1U, width >> mip_level), 64U * 8U / GetFormatBpp());
}
u32 MipHeight(u32 mip_level) const {
return std::max(1U, height >> mip_level);
}
@@ -355,10 +346,6 @@ public:
return cached_size_in_bytes;
}
std::size_t GetMemorySize() const {
return memory_size;
}
void Flush() override {
FlushGLBuffer();
}
@@ -408,26 +395,6 @@ public:
Tegra::Texture::SwizzleSource swizzle_z,
Tegra::Texture::SwizzleSource swizzle_w);
void MarkReinterpreted() {
reinterpreted = true;
}
bool IsReinterpreted() const {
return reinterpreted;
}
void MarkForReload(bool reload) {
must_reload = reload;
}
bool MustReload() const {
return must_reload;
}
bool IsUploaded() const {
return params.identity == SurfaceParams::SurfaceClass::Uploaded;
}
private:
void UploadGLMipmapTexture(u32 mip_map, GLuint read_fb_handle, GLuint draw_fb_handle);
@@ -441,9 +408,6 @@ private:
GLenum gl_internal_format{};
std::size_t cached_size_in_bytes{};
std::array<GLenum, 4> swizzle{GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA};
std::size_t memory_size;
bool reinterpreted = false;
bool must_reload = false;
};
class RasterizerCacheOpenGL final : public RasterizerCache<Surface> {
@@ -466,11 +430,8 @@ public:
/// Copies the contents of one surface to another
void FermiCopySurface(const Tegra::Engines::Fermi2D::Regs::Surface& src_config,
const Tegra::Engines::Fermi2D::Regs::Surface& dst_config,
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect);
void SignalPreDrawCall();
void SignalPostDrawCall();
const MathUtil::Rectangle<u32>& src_rect,
const MathUtil::Rectangle<u32>& dst_rect);
private:
void LoadSurface(const Surface& surface);
@@ -488,10 +449,6 @@ private:
/// Tries to get a reserved surface for the specified parameters
Surface TryGetReservedSurface(const SurfaceParams& params);
// Partialy reinterpret a surface based on a triggering_surface that collides with it.
// returns true if the reinterpret was successful, false in case it was not.
bool PartialReinterpretSurface(Surface triggering_surface, Surface intersect);
/// Performs a slow but accurate surface copy, flushing to RAM and reinterpreting the data
void AccurateCopySurface(const Surface& src_surface, const Surface& dst_surface);
void FastLayeredCopySurface(const Surface& src_surface, const Surface& dst_surface);
@@ -508,50 +465,12 @@ private:
OGLFramebuffer read_framebuffer;
OGLFramebuffer draw_framebuffer;
bool texception = false;
/// Use a Pixel Buffer Object to download the previous texture and then upload it to the new one
/// using the new format.
OGLBuffer copy_pbo;
std::array<Surface, Maxwell::NumRenderTargets> last_color_buffers;
std::array<Surface, Maxwell::NumRenderTargets> current_color_buffers;
std::array<Surface, Tegra::Engines::Maxwell3D::Regs::NumRenderTargets> last_color_buffers;
Surface last_depth_buffer;
using SurfaceIntervalCache = boost::icl::interval_map<VAddr, Surface>;
using SurfaceInterval = typename SurfaceIntervalCache::interval_type;
static auto GetReinterpretInterval(const Surface& object) {
return SurfaceInterval::right_open(object->GetAddr() + 1,
object->GetAddr() + object->GetMemorySize() - 1);
}
// Reinterpreted surfaces are very fragil as the game may keep rendering into them.
SurfaceIntervalCache reinterpreted_surfaces;
void RegisterReinterpretSurface(Surface reinterpret_surface) {
auto interval = GetReinterpretInterval(reinterpret_surface);
reinterpreted_surfaces.insert({interval, reinterpret_surface});
reinterpret_surface->MarkReinterpreted();
}
Surface CollideOnReinterpretedSurface(VAddr addr) const {
const SurfaceInterval interval{addr};
for (auto& pair :
boost::make_iterator_range(reinterpreted_surfaces.equal_range(interval))) {
return pair.second;
}
return nullptr;
}
/// Unregisters an object from the cache
void UnregisterSurface(const Surface& object) {
if (object->IsReinterpreted()) {
auto interval = GetReinterpretInterval(object);
reinterpreted_surfaces.erase(interval);
}
Unregister(object);
}
};
} // namespace OpenGL

View File

@@ -20,7 +20,6 @@
namespace OpenGL::GLShader {
using Tegra::Shader::Attribute;
using Tegra::Shader::AttributeUse;
using Tegra::Shader::Header;
using Tegra::Shader::IpaInterpMode;
using Tegra::Shader::IpaMode;
@@ -289,22 +288,34 @@ private:
code.AddNewLine();
}
std::string GetInputFlags(AttributeUse attribute) {
std::string GetInputFlags(const IpaMode& input_mode) {
const IpaSampleMode sample_mode = input_mode.sampling_mode;
const IpaInterpMode interp_mode = input_mode.interpolation_mode;
std::string out;
switch (attribute) {
case AttributeUse::Constant:
switch (interp_mode) {
case IpaInterpMode::Flat:
out += "flat ";
break;
case AttributeUse::ScreenLinear:
case IpaInterpMode::Linear:
out += "noperspective ";
break;
case AttributeUse::Perspective:
case IpaInterpMode::Perspective:
// Default, Smooth
break;
default:
LOG_CRITICAL(HW_GPU, "Unused attribute being fetched");
UNREACHABLE();
UNIMPLEMENTED_MSG("Unhandled IPA interp mode: {}", static_cast<u32>(interp_mode));
}
switch (sample_mode) {
case IpaSampleMode::Centroid:
// It can be implemented with the "centroid " keyword in GLSL
UNIMPLEMENTED_MSG("Unimplemented IPA sampler mode centroid");
break;
case IpaSampleMode::Default:
// Default, n/a
break;
default:
UNIMPLEMENTED_MSG("Unimplemented IPA sampler mode: {}", static_cast<u32>(sample_mode));
}
return out;
}
@@ -313,11 +324,16 @@ private:
const auto& attributes = ir.GetInputAttributes();
for (const auto element : attributes) {
const Attribute::Index index = element.first;
const IpaMode& input_mode = *element.second.begin();
if (index < Attribute::Index::Attribute_0 || index > Attribute::Index::Attribute_31) {
// Skip when it's not a generic attribute
continue;
}
ASSERT(element.second.size() > 0);
UNIMPLEMENTED_IF_MSG(element.second.size() > 1,
"Multiple input flag modes are not supported in GLSL");
// TODO(bunnei): Use proper number of elements for these
u32 idx = static_cast<u32>(index) - static_cast<u32>(Attribute::Index::Attribute_0);
if (stage != ShaderStage::Vertex) {
@@ -329,14 +345,8 @@ private:
if (stage == ShaderStage::Geometry) {
attr = "gs_" + attr + "[]";
}
std::string suffix;
if (stage == ShaderStage::Fragment) {
const auto input_mode =
header.ps.GetAttributeUse(idx - GENERIC_VARYING_START_LOCATION);
suffix = GetInputFlags(input_mode);
}
code.AddLine("layout (location = " + std::to_string(idx) + ") " + suffix + "in vec4 " +
attr + ';');
code.AddLine("layout (location = " + std::to_string(idx) + ") " +
GetInputFlags(input_mode) + "in vec4 " + attr + ';');
}
if (!attributes.empty())
code.AddNewLine();
@@ -1574,4 +1584,4 @@ ProgramResult Decompile(const ShaderIR& ir, Maxwell::ShaderStage stage, const st
return {decompiler.GetResult(), decompiler.GetShaderEntries()};
}
} // namespace OpenGL::GLShader
} // namespace OpenGL::GLShader

View File

@@ -2,6 +2,8 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstring>
#include <fmt/format.h>
#include <lz4.h>

View File

@@ -124,7 +124,7 @@ layout (location = 5) out vec4 FragColor5;
layout (location = 6) out vec4 FragColor6;
layout (location = 7) out vec4 FragColor7;
layout (location = 0) in noperspective vec4 position;
layout (location = 0) in vec4 position;
layout (std140, binding = EMULATION_UBO_BINDING) uniform fs_config {
vec4 viewport_flip;
@@ -172,4 +172,4 @@ void main() {
return {out, program.second};
}
} // namespace OpenGL::GLShader
} // namespace OpenGL::GLShader

View File

@@ -11,9 +11,7 @@
namespace OpenGL {
OpenGLState OpenGLState::cur_state;
bool OpenGLState::s_rgb_used;
OpenGLState::OpenGLState() {
// These all match default OpenGL values
geometry_shaders.enabled = false;
@@ -114,6 +112,7 @@ void OpenGLState::ApplyDefaultState() {
}
void OpenGLState::ApplySRgb() const {
// sRGB
if (framebuffer_srgb.enabled != cur_state.framebuffer_srgb.enabled) {
if (framebuffer_srgb.enabled) {
// Track if sRGB is used
@@ -126,20 +125,23 @@ void OpenGLState::ApplySRgb() const {
}
void OpenGLState::ApplyCulling() const {
if (cull.enabled != cur_state.cull.enabled) {
// Culling
const bool cull_changed = cull.enabled != cur_state.cull.enabled;
if (cull_changed) {
if (cull.enabled) {
glEnable(GL_CULL_FACE);
} else {
glDisable(GL_CULL_FACE);
}
}
if (cull.enabled) {
if (cull_changed || cull.mode != cur_state.cull.mode) {
glCullFace(cull.mode);
}
if (cull.mode != cur_state.cull.mode) {
glCullFace(cull.mode);
}
if (cull.front_face != cur_state.cull.front_face) {
glFrontFace(cull.front_face);
if (cull_changed || cull.front_face != cur_state.cull.front_face) {
glFrontFace(cull.front_face);
}
}
}
@@ -170,63 +172,72 @@ void OpenGLState::ApplyColorMask() const {
}
void OpenGLState::ApplyDepth() const {
if (depth.test_enabled != cur_state.depth.test_enabled) {
// Depth test
const bool depth_test_changed = depth.test_enabled != cur_state.depth.test_enabled;
if (depth_test_changed) {
if (depth.test_enabled) {
glEnable(GL_DEPTH_TEST);
} else {
glDisable(GL_DEPTH_TEST);
}
}
if (depth.test_func != cur_state.depth.test_func) {
if (depth.test_enabled &&
(depth_test_changed || depth.test_func != cur_state.depth.test_func)) {
glDepthFunc(depth.test_func);
}
// Depth mask
if (depth.write_mask != cur_state.depth.write_mask) {
glDepthMask(depth.write_mask);
}
}
void OpenGLState::ApplyPrimitiveRestart() const {
if (primitive_restart.enabled != cur_state.primitive_restart.enabled) {
const bool primitive_restart_changed =
primitive_restart.enabled != cur_state.primitive_restart.enabled;
if (primitive_restart_changed) {
if (primitive_restart.enabled) {
glEnable(GL_PRIMITIVE_RESTART);
} else {
glDisable(GL_PRIMITIVE_RESTART);
}
}
if (primitive_restart.index != cur_state.primitive_restart.index) {
if (primitive_restart_changed ||
(primitive_restart.enabled &&
primitive_restart.index != cur_state.primitive_restart.index)) {
glPrimitiveRestartIndex(primitive_restart.index);
}
}
void OpenGLState::ApplyStencilTest() const {
if (stencil.test_enabled != cur_state.stencil.test_enabled) {
const bool stencil_test_changed = stencil.test_enabled != cur_state.stencil.test_enabled;
if (stencil_test_changed) {
if (stencil.test_enabled) {
glEnable(GL_STENCIL_TEST);
} else {
glDisable(GL_STENCIL_TEST);
}
}
const auto ConfigStencil = [](GLenum face, const auto& config, const auto& prev_config) {
if (config.test_func != prev_config.test_func || config.test_ref != prev_config.test_ref ||
config.test_mask != prev_config.test_mask) {
glStencilFuncSeparate(face, config.test_func, config.test_ref, config.test_mask);
}
if (config.action_depth_fail != prev_config.action_depth_fail ||
config.action_depth_pass != prev_config.action_depth_pass ||
config.action_stencil_fail != prev_config.action_stencil_fail) {
glStencilOpSeparate(face, config.action_stencil_fail, config.action_depth_fail,
config.action_depth_pass);
}
if (config.write_mask != prev_config.write_mask) {
glStencilMaskSeparate(face, config.write_mask);
}
};
ConfigStencil(GL_FRONT, stencil.front, cur_state.stencil.front);
ConfigStencil(GL_BACK, stencil.back, cur_state.stencil.back);
if (stencil.test_enabled) {
auto config_stencil = [stencil_test_changed](GLenum face, const auto& config,
const auto& prev_config) {
if (stencil_test_changed || config.test_func != prev_config.test_func ||
config.test_ref != prev_config.test_ref ||
config.test_mask != prev_config.test_mask) {
glStencilFuncSeparate(face, config.test_func, config.test_ref, config.test_mask);
}
if (stencil_test_changed || config.action_depth_fail != prev_config.action_depth_fail ||
config.action_depth_pass != prev_config.action_depth_pass ||
config.action_stencil_fail != prev_config.action_stencil_fail) {
glStencilOpSeparate(face, config.action_stencil_fail, config.action_depth_fail,
config.action_depth_pass);
}
if (config.write_mask != prev_config.write_mask) {
glStencilMaskSeparate(face, config.write_mask);
}
};
config_stencil(GL_FRONT, stencil.front, cur_state.stencil.front);
config_stencil(GL_BACK, stencil.back, cur_state.stencil.back);
}
}
// Viewport does not affects glClearBuffer so emulate viewport using scissor test
void OpenGLState::EmulateViewportWithScissor() {
@@ -267,18 +278,19 @@ void OpenGLState::ApplyViewport() const {
updated.depth_range_far != current.depth_range_far) {
glDepthRangeIndexed(i, updated.depth_range_near, updated.depth_range_far);
}
if (updated.scissor.enabled != current.scissor.enabled) {
const bool scissor_changed = updated.scissor.enabled != current.scissor.enabled;
if (scissor_changed) {
if (updated.scissor.enabled) {
glEnablei(GL_SCISSOR_TEST, i);
} else {
glDisablei(GL_SCISSOR_TEST, i);
}
}
if (updated.scissor.x != current.scissor.x || updated.scissor.y != current.scissor.y ||
updated.scissor.width != current.scissor.width ||
updated.scissor.height != current.scissor.height) {
if (updated.scissor.enabled &&
(scissor_changed || updated.scissor.x != current.scissor.x ||
updated.scissor.y != current.scissor.y ||
updated.scissor.width != current.scissor.width ||
updated.scissor.height != current.scissor.height)) {
glScissorIndexed(i, updated.scissor.x, updated.scissor.y, updated.scissor.width,
updated.scissor.height);
}
@@ -290,23 +302,22 @@ void OpenGLState::ApplyViewport() const {
updated.height != current.height) {
glViewport(updated.x, updated.y, updated.width, updated.height);
}
if (updated.depth_range_near != current.depth_range_near ||
updated.depth_range_far != current.depth_range_far) {
glDepthRange(updated.depth_range_near, updated.depth_range_far);
}
if (updated.scissor.enabled != current.scissor.enabled) {
const bool scissor_changed = updated.scissor.enabled != current.scissor.enabled;
if (scissor_changed) {
if (updated.scissor.enabled) {
glEnable(GL_SCISSOR_TEST);
} else {
glDisable(GL_SCISSOR_TEST);
}
}
if (updated.scissor.x != current.scissor.x || updated.scissor.y != current.scissor.y ||
updated.scissor.width != current.scissor.width ||
updated.scissor.height != current.scissor.height) {
if (updated.scissor.enabled && (scissor_changed || updated.scissor.x != current.scissor.x ||
updated.scissor.y != current.scissor.y ||
updated.scissor.width != current.scissor.width ||
updated.scissor.height != current.scissor.height)) {
glScissor(updated.scissor.x, updated.scissor.y, updated.scissor.width,
updated.scissor.height);
}
@@ -316,7 +327,8 @@ void OpenGLState::ApplyViewport() const {
void OpenGLState::ApplyGlobalBlending() const {
const Blend& current = cur_state.blend[0];
const Blend& updated = blend[0];
if (updated.enabled != current.enabled) {
const bool blend_changed = updated.enabled != current.enabled;
if (blend_changed) {
if (updated.enabled) {
glEnable(GL_BLEND);
} else {
@@ -326,14 +338,15 @@ void OpenGLState::ApplyGlobalBlending() const {
if (!updated.enabled) {
return;
}
if (updated.src_rgb_func != current.src_rgb_func ||
if (blend_changed || updated.src_rgb_func != current.src_rgb_func ||
updated.dst_rgb_func != current.dst_rgb_func || updated.src_a_func != current.src_a_func ||
updated.dst_a_func != current.dst_a_func) {
glBlendFuncSeparate(updated.src_rgb_func, updated.dst_rgb_func, updated.src_a_func,
updated.dst_a_func);
}
if (updated.rgb_equation != current.rgb_equation || updated.a_equation != current.a_equation) {
if (blend_changed || updated.rgb_equation != current.rgb_equation ||
updated.a_equation != current.a_equation) {
glBlendEquationSeparate(updated.rgb_equation, updated.a_equation);
}
}
@@ -341,22 +354,26 @@ void OpenGLState::ApplyGlobalBlending() const {
void OpenGLState::ApplyTargetBlending(std::size_t target, bool force) const {
const Blend& updated = blend[target];
const Blend& current = cur_state.blend[target];
if (updated.enabled != current.enabled || force) {
const bool blend_changed = updated.enabled != current.enabled || force;
if (blend_changed) {
if (updated.enabled) {
glEnablei(GL_BLEND, static_cast<GLuint>(target));
} else {
glDisablei(GL_BLEND, static_cast<GLuint>(target));
}
}
if (updated.src_rgb_func != current.src_rgb_func ||
if (!updated.enabled) {
return;
}
if (blend_changed || updated.src_rgb_func != current.src_rgb_func ||
updated.dst_rgb_func != current.dst_rgb_func || updated.src_a_func != current.src_a_func ||
updated.dst_a_func != current.dst_a_func) {
glBlendFuncSeparatei(static_cast<GLuint>(target), updated.src_rgb_func,
updated.dst_rgb_func, updated.src_a_func, updated.dst_a_func);
}
if (updated.rgb_equation != current.rgb_equation || updated.a_equation != current.a_equation) {
if (blend_changed || updated.rgb_equation != current.rgb_equation ||
updated.a_equation != current.a_equation) {
glBlendEquationSeparatei(static_cast<GLuint>(target), updated.rgb_equation,
updated.a_equation);
}
@@ -380,7 +397,8 @@ void OpenGLState::ApplyBlending() const {
}
void OpenGLState::ApplyLogicOp() const {
if (logic_op.enabled != cur_state.logic_op.enabled) {
const bool logic_op_changed = logic_op.enabled != cur_state.logic_op.enabled;
if (logic_op_changed) {
if (logic_op.enabled) {
glEnable(GL_COLOR_LOGIC_OP);
} else {
@@ -388,12 +406,14 @@ void OpenGLState::ApplyLogicOp() const {
}
}
if (logic_op.operation != cur_state.logic_op.operation) {
if (logic_op.enabled &&
(logic_op_changed || logic_op.operation != cur_state.logic_op.operation)) {
glLogicOp(logic_op.operation);
}
}
void OpenGLState::ApplyPolygonOffset() const {
const bool fill_enable_changed =
polygon_offset.fill_enable != cur_state.polygon_offset.fill_enable;
const bool line_enable_changed =
@@ -428,7 +448,9 @@ void OpenGLState::ApplyPolygonOffset() const {
}
}
if (factor_changed || units_changed || clamp_changed) {
if ((polygon_offset.fill_enable || polygon_offset.line_enable || polygon_offset.point_enable) &&
(factor_changed || units_changed || clamp_changed)) {
if (GLAD_GL_EXT_polygon_offset_clamp && polygon_offset.clamp != 0) {
glPolygonOffsetClamp(polygon_offset.factor, polygon_offset.units, polygon_offset.clamp);
} else {
@@ -506,9 +528,9 @@ void OpenGLState::ApplyDepthClamp() const {
depth_clamp.near_plane == cur_state.depth_clamp.near_plane) {
return;
}
UNIMPLEMENTED_IF_MSG(depth_clamp.far_plane != depth_clamp.near_plane,
"Unimplemented Depth Clamp Separation!");
if (depth_clamp.far_plane != depth_clamp.near_plane) {
UNIMPLEMENTED_MSG("Unimplemented Depth Clamp Separation!");
}
if (depth_clamp.far_plane || depth_clamp.near_plane) {
glEnable(GL_DEPTH_CLAMP);
} else {

View File

@@ -257,7 +257,6 @@ void RendererOpenGL::ConfigureFramebufferTexture(TextureInfo& texture,
const Tegra::FramebufferConfig& framebuffer) {
texture.width = framebuffer.width;
texture.height = framebuffer.height;
texture.pixel_format = framebuffer.pixel_format;
GLint internal_format;
switch (framebuffer.pixel_format) {
@@ -381,8 +380,7 @@ void RendererOpenGL::CaptureScreenshot() {
GLuint renderbuffer;
glGenRenderbuffers(1, &renderbuffer);
glBindRenderbuffer(GL_RENDERBUFFER, renderbuffer);
glRenderbufferStorage(GL_RENDERBUFFER, state.GetsRGBUsed() ? GL_SRGB8 : GL_RGB8, layout.width,
layout.height);
glRenderbufferStorage(GL_RENDERBUFFER, GL_RGB8, layout.width, layout.height);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, renderbuffer);
DrawScreen(layout);

View File

@@ -39,7 +39,7 @@ struct TextureInfo {
/// Structure used for storing information about the display target for the Switch screen
struct ScreenInfo {
GLuint display_texture;
const Common::Rectangle<float> display_texcoords{0.0f, 0.0f, 1.0f, 1.0f};
const MathUtil::Rectangle<float> display_texcoords{0.0f, 0.0f, 1.0f, 1.0f};
TextureInfo texture;
};
@@ -102,7 +102,7 @@ private:
/// Used for transforming the framebuffer orientation
Tegra::FramebufferConfig::TransformFlags framebuffer_transform_flags;
Common::Rectangle<int> framebuffer_crop_rect;
MathUtil::Rectangle<int> framebuffer_crop_rect;
};
} // namespace OpenGL

View File

@@ -1,252 +0,0 @@
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <optional>
#include <tuple>
#include <vector>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_memory_manager.h"
namespace Vulkan {
// TODO(Rodrigo): Fine tune this number
constexpr u64 ALLOC_CHUNK_SIZE = 64 * 1024 * 1024;
class VKMemoryAllocation final {
public:
explicit VKMemoryAllocation(const VKDevice& device, vk::DeviceMemory memory,
vk::MemoryPropertyFlags properties, u64 alloc_size, u32 type)
: device{device}, memory{memory}, properties{properties}, alloc_size{alloc_size},
shifted_type{ShiftType(type)}, is_mappable{properties &
vk::MemoryPropertyFlagBits::eHostVisible} {
if (is_mappable) {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
base_address = static_cast<u8*>(dev.mapMemory(memory, 0, alloc_size, {}, dld));
}
}
~VKMemoryAllocation() {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
if (is_mappable)
dev.unmapMemory(memory, dld);
dev.free(memory, nullptr, dld);
}
VKMemoryCommit Commit(vk::DeviceSize commit_size, vk::DeviceSize alignment) {
auto found = TryFindFreeSection(free_iterator, alloc_size, static_cast<u64>(commit_size),
static_cast<u64>(alignment));
if (!found) {
found = TryFindFreeSection(0, free_iterator, static_cast<u64>(commit_size),
static_cast<u64>(alignment));
if (!found) {
// Signal out of memory, it'll try to do more allocations.
return nullptr;
}
}
u8* address = is_mappable ? base_address + *found : nullptr;
auto commit = std::make_unique<VKMemoryCommitImpl>(this, memory, address, *found,
*found + commit_size);
commits.push_back(commit.get());
// Last commit's address is highly probable to be free.
free_iterator = *found + commit_size;
return commit;
}
void Free(const VKMemoryCommitImpl* commit) {
ASSERT(commit);
const auto it =
std::find_if(commits.begin(), commits.end(),
[&](const auto& stored_commit) { return stored_commit == commit; });
if (it == commits.end()) {
LOG_CRITICAL(Render_Vulkan, "Freeing unallocated commit!");
UNREACHABLE();
return;
}
commits.erase(it);
}
/// Returns whether this allocation is compatible with the arguments.
bool IsCompatible(vk::MemoryPropertyFlags wanted_properties, u32 type_mask) const {
return (wanted_properties & properties) != vk::MemoryPropertyFlagBits(0) &&
(type_mask & shifted_type) != 0;
}
private:
static constexpr u32 ShiftType(u32 type) {
return 1U << type;
}
/// A memory allocator, it may return a free region between "start" and "end" with the solicited
/// requeriments.
std::optional<u64> TryFindFreeSection(u64 start, u64 end, u64 size, u64 alignment) const {
u64 iterator = start;
while (iterator + size < end) {
const u64 try_left = Common::AlignUp(iterator, alignment);
const u64 try_right = try_left + size;
bool overlap = false;
for (const auto& commit : commits) {
const auto [commit_left, commit_right] = commit->interval;
if (try_left < commit_right && commit_left < try_right) {
// There's an overlap, continue the search where the overlapping commit ends.
iterator = commit_right;
overlap = true;
break;
}
}
if (!overlap) {
// A free address has been found.
return try_left;
}
}
// No free regions where found, return an empty optional.
return std::nullopt;
}
const VKDevice& device; ///< Vulkan device.
const vk::DeviceMemory memory; ///< Vulkan memory allocation handler.
const vk::MemoryPropertyFlags properties; ///< Vulkan properties.
const u64 alloc_size; ///< Size of this allocation.
const u32 shifted_type; ///< Stored Vulkan type of this allocation, shifted.
const bool is_mappable; ///< Whether the allocation is mappable.
/// Base address of the mapped pointer.
u8* base_address{};
/// Hints where the next free region is likely going to be.
u64 free_iterator{};
/// Stores all commits done from this allocation.
std::vector<const VKMemoryCommitImpl*> commits;
};
VKMemoryManager::VKMemoryManager(const VKDevice& device)
: device{device}, props{device.GetPhysical().getMemoryProperties(device.GetDispatchLoader())},
is_memory_unified{GetMemoryUnified(props)} {}
VKMemoryManager::~VKMemoryManager() = default;
VKMemoryCommit VKMemoryManager::Commit(const vk::MemoryRequirements& reqs, bool host_visible) {
ASSERT(reqs.size < ALLOC_CHUNK_SIZE);
// When a host visible commit is asked, search for host visible and coherent, otherwise search
// for a fast device local type.
const vk::MemoryPropertyFlags wanted_properties =
host_visible
? vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent
: vk::MemoryPropertyFlagBits::eDeviceLocal;
const auto TryCommit = [&]() -> VKMemoryCommit {
for (auto& alloc : allocs) {
if (!alloc->IsCompatible(wanted_properties, reqs.memoryTypeBits))
continue;
if (auto commit = alloc->Commit(reqs.size, reqs.alignment); commit) {
return commit;
}
}
return {};
};
if (auto commit = TryCommit(); commit) {
return commit;
}
// Commit has failed, allocate more memory.
if (!AllocMemory(wanted_properties, reqs.memoryTypeBits, ALLOC_CHUNK_SIZE)) {
// TODO(Rodrigo): Try to use host memory.
LOG_CRITICAL(Render_Vulkan, "Ran out of memory!");
UNREACHABLE();
}
// Commit again, this time it won't fail since there's a fresh allocation above. If it does,
// there's a bug.
auto commit = TryCommit();
ASSERT(commit);
return commit;
}
VKMemoryCommit VKMemoryManager::Commit(vk::Buffer buffer, bool host_visible) {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
const auto requeriments = dev.getBufferMemoryRequirements(buffer, dld);
auto commit = Commit(requeriments, host_visible);
dev.bindBufferMemory(buffer, commit->GetMemory(), commit->GetOffset(), dld);
return commit;
}
VKMemoryCommit VKMemoryManager::Commit(vk::Image image, bool host_visible) {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
const auto requeriments = dev.getImageMemoryRequirements(image, dld);
auto commit = Commit(requeriments, host_visible);
dev.bindImageMemory(image, commit->GetMemory(), commit->GetOffset(), dld);
return commit;
}
bool VKMemoryManager::AllocMemory(vk::MemoryPropertyFlags wanted_properties, u32 type_mask,
u64 size) {
const u32 type = [&]() {
for (u32 type_index = 0; type_index < props.memoryTypeCount; ++type_index) {
const auto flags = props.memoryTypes[type_index].propertyFlags;
if ((type_mask & (1U << type_index)) && (flags & wanted_properties)) {
// The type matches in type and in the wanted properties.
return type_index;
}
}
LOG_CRITICAL(Render_Vulkan, "Couldn't find a compatible memory type!");
UNREACHABLE();
return 0u;
}();
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
// Try to allocate found type.
const vk::MemoryAllocateInfo memory_ai(size, type);
vk::DeviceMemory memory;
if (const vk::Result res = dev.allocateMemory(&memory_ai, nullptr, &memory, dld);
res != vk::Result::eSuccess) {
LOG_CRITICAL(Render_Vulkan, "Device allocation failed with code {}!", vk::to_string(res));
return false;
}
allocs.push_back(
std::make_unique<VKMemoryAllocation>(device, memory, wanted_properties, size, type));
return true;
}
/*static*/ bool VKMemoryManager::GetMemoryUnified(const vk::PhysicalDeviceMemoryProperties& props) {
for (u32 heap_index = 0; heap_index < props.memoryHeapCount; ++heap_index) {
if (!(props.memoryHeaps[heap_index].flags & vk::MemoryHeapFlagBits::eDeviceLocal)) {
// Memory is considered unified when heaps are device local only.
return false;
}
}
return true;
}
VKMemoryCommitImpl::VKMemoryCommitImpl(VKMemoryAllocation* allocation, vk::DeviceMemory memory,
u8* data, u64 begin, u64 end)
: allocation{allocation}, memory{memory}, data{data}, interval(std::make_pair(begin, end)) {}
VKMemoryCommitImpl::~VKMemoryCommitImpl() {
allocation->Free(this);
}
u8* VKMemoryCommitImpl::GetData() const {
ASSERT_MSG(data != nullptr, "Trying to access an unmapped commit.");
return data;
}
} // namespace Vulkan

View File

@@ -1,87 +0,0 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <utility>
#include <vector>
#include "common/common_types.h"
#include "video_core/renderer_vulkan/declarations.h"
namespace Vulkan {
class VKDevice;
class VKMemoryAllocation;
class VKMemoryCommitImpl;
using VKMemoryCommit = std::unique_ptr<VKMemoryCommitImpl>;
class VKMemoryManager final {
public:
explicit VKMemoryManager(const VKDevice& device);
~VKMemoryManager();
/**
* Commits a memory with the specified requeriments.
* @param reqs Requeriments returned from a Vulkan call.
* @param host_visible Signals the allocator that it *must* use host visible and coherent
* memory. When passing false, it will try to allocate device local memory.
* @returns A memory commit.
*/
VKMemoryCommit Commit(const vk::MemoryRequirements& reqs, bool host_visible);
/// Commits memory required by the buffer and binds it.
VKMemoryCommit Commit(vk::Buffer buffer, bool host_visible);
/// Commits memory required by the image and binds it.
VKMemoryCommit Commit(vk::Image image, bool host_visible);
/// Returns true if the memory allocations are done always in host visible and coherent memory.
bool IsMemoryUnified() const {
return is_memory_unified;
}
private:
/// Allocates a chunk of memory.
bool AllocMemory(vk::MemoryPropertyFlags wanted_properties, u32 type_mask, u64 size);
/// Returns true if the device uses an unified memory model.
static bool GetMemoryUnified(const vk::PhysicalDeviceMemoryProperties& props);
const VKDevice& device; ///< Device handler.
const vk::PhysicalDeviceMemoryProperties props; ///< Physical device properties.
const bool is_memory_unified; ///< True if memory model is unified.
std::vector<std::unique_ptr<VKMemoryAllocation>> allocs; ///< Current allocations.
};
class VKMemoryCommitImpl final {
friend VKMemoryAllocation;
public:
explicit VKMemoryCommitImpl(VKMemoryAllocation* allocation, vk::DeviceMemory memory, u8* data,
u64 begin, u64 end);
~VKMemoryCommitImpl();
/// Returns the writeable memory map. The commit has to be mappable.
u8* GetData() const;
/// Returns the Vulkan memory handler.
vk::DeviceMemory GetMemory() const {
return memory;
}
/// Returns the start position of the commit relative to the allocation.
vk::DeviceSize GetOffset() const {
return static_cast<vk::DeviceSize>(interval.first);
}
private:
std::pair<u64, u64> interval{}; ///< Interval where the commit exists.
vk::DeviceMemory memory; ///< Vulkan device memory handler.
VKMemoryAllocation* allocation{}; ///< Pointer to the large memory allocation.
u8* data{}; ///< Pointer to the host mapped memory, it has the commit offset included.
};
} // namespace Vulkan

View File

@@ -1,285 +0,0 @@
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <optional>
#include "common/assert.h"
#include "common/logging/log.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"
namespace Vulkan {
// TODO(Rodrigo): Fine tune these numbers.
constexpr std::size_t COMMAND_BUFFER_POOL_SIZE = 0x1000;
constexpr std::size_t FENCES_GROW_STEP = 0x40;
class CommandBufferPool final : public VKFencedPool {
public:
CommandBufferPool(const VKDevice& device)
: VKFencedPool(COMMAND_BUFFER_POOL_SIZE), device{device} {}
void Allocate(std::size_t begin, std::size_t end) {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
const u32 graphics_family = device.GetGraphicsFamily();
auto pool = std::make_unique<Pool>();
// Command buffers are going to be commited, recorded, executed every single usage cycle.
// They are also going to be reseted when commited.
const auto pool_flags = vk::CommandPoolCreateFlagBits::eTransient |
vk::CommandPoolCreateFlagBits::eResetCommandBuffer;
const vk::CommandPoolCreateInfo cmdbuf_pool_ci(pool_flags, graphics_family);
pool->handle = dev.createCommandPoolUnique(cmdbuf_pool_ci, nullptr, dld);
const vk::CommandBufferAllocateInfo cmdbuf_ai(*pool->handle,
vk::CommandBufferLevel::ePrimary,
static_cast<u32>(COMMAND_BUFFER_POOL_SIZE));
pool->cmdbufs =
dev.allocateCommandBuffersUnique<std::allocator<UniqueCommandBuffer>>(cmdbuf_ai, dld);
pools.push_back(std::move(pool));
}
vk::CommandBuffer Commit(VKFence& fence) {
const std::size_t index = CommitResource(fence);
const auto pool_index = index / COMMAND_BUFFER_POOL_SIZE;
const auto sub_index = index % COMMAND_BUFFER_POOL_SIZE;
return *pools[pool_index]->cmdbufs[sub_index];
}
private:
struct Pool {
UniqueCommandPool handle;
std::vector<UniqueCommandBuffer> cmdbufs;
};
const VKDevice& device;
std::vector<std::unique_ptr<Pool>> pools;
};
VKResource::VKResource() = default;
VKResource::~VKResource() = default;
VKFence::VKFence(const VKDevice& device, UniqueFence handle)
: device{device}, handle{std::move(handle)} {}
VKFence::~VKFence() = default;
void VKFence::Wait() {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
dev.waitForFences({*handle}, true, std::numeric_limits<u64>::max(), dld);
}
void VKFence::Release() {
is_owned = false;
}
void VKFence::Commit() {
is_owned = true;
is_used = true;
}
bool VKFence::Tick(bool gpu_wait, bool owner_wait) {
if (!is_used) {
// If a fence is not used it's always free.
return true;
}
if (is_owned && !owner_wait) {
// The fence is still being owned (Release has not been called) and ownership wait has
// not been asked.
return false;
}
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
if (gpu_wait) {
// Wait for the fence if it has been requested.
dev.waitForFences({*handle}, true, std::numeric_limits<u64>::max(), dld);
} else {
if (dev.getFenceStatus(*handle, dld) != vk::Result::eSuccess) {
// Vulkan fence is not ready, not much it can do here
return false;
}
}
// Broadcast resources their free state.
for (auto* resource : protected_resources) {
resource->OnFenceRemoval(this);
}
protected_resources.clear();
// Prepare fence for reusage.
dev.resetFences({*handle}, dld);
is_used = false;
return true;
}
void VKFence::Protect(VKResource* resource) {
protected_resources.push_back(resource);
}
void VKFence::Unprotect(const VKResource* resource) {
const auto it = std::find(protected_resources.begin(), protected_resources.end(), resource);
if (it != protected_resources.end()) {
protected_resources.erase(it);
}
}
VKFenceWatch::VKFenceWatch() = default;
VKFenceWatch::~VKFenceWatch() {
if (fence) {
fence->Unprotect(this);
}
}
void VKFenceWatch::Wait() {
if (!fence) {
return;
}
fence->Wait();
fence->Unprotect(this);
fence = nullptr;
}
void VKFenceWatch::Watch(VKFence& new_fence) {
Wait();
fence = &new_fence;
fence->Protect(this);
}
bool VKFenceWatch::TryWatch(VKFence& new_fence) {
if (fence) {
return false;
}
fence = &new_fence;
fence->Protect(this);
return true;
}
void VKFenceWatch::OnFenceRemoval(VKFence* signaling_fence) {
ASSERT_MSG(signaling_fence == fence, "Removing the wrong fence");
fence = nullptr;
}
VKFencedPool::VKFencedPool(std::size_t grow_step) : grow_step{grow_step} {}
VKFencedPool::~VKFencedPool() = default;
std::size_t VKFencedPool::CommitResource(VKFence& fence) {
const auto Search = [&](std::size_t begin, std::size_t end) -> std::optional<std::size_t> {
for (std::size_t iterator = begin; iterator < end; ++iterator) {
if (watches[iterator]->TryWatch(fence)) {
// The resource is now being watched, a free resource was successfully found.
return iterator;
}
}
return {};
};
// Try to find a free resource from the hinted position to the end.
auto found = Search(free_iterator, watches.size());
if (!found) {
// Search from beginning to the hinted position.
found = Search(0, free_iterator);
if (!found) {
// Both searches failed, the pool is full; handle it.
const std::size_t free_resource = ManageOverflow();
// Watch will wait for the resource to be free.
watches[free_resource]->Watch(fence);
found = free_resource;
}
}
// Free iterator is hinted to the resource after the one that's been commited.
free_iterator = (*found + 1) % watches.size();
return *found;
}
std::size_t VKFencedPool::ManageOverflow() {
const std::size_t old_capacity = watches.size();
Grow();
// The last entry is guaranted to be free, since it's the first element of the freshly
// allocated resources.
return old_capacity;
}
void VKFencedPool::Grow() {
const std::size_t old_capacity = watches.size();
watches.resize(old_capacity + grow_step);
std::generate(watches.begin() + old_capacity, watches.end(),
[]() { return std::make_unique<VKFenceWatch>(); });
Allocate(old_capacity, old_capacity + grow_step);
}
VKResourceManager::VKResourceManager(const VKDevice& device) : device{device} {
GrowFences(FENCES_GROW_STEP);
command_buffer_pool = std::make_unique<CommandBufferPool>(device);
}
VKResourceManager::~VKResourceManager() = default;
VKFence& VKResourceManager::CommitFence() {
const auto StepFences = [&](bool gpu_wait, bool owner_wait) -> VKFence* {
const auto Tick = [=](auto& fence) { return fence->Tick(gpu_wait, owner_wait); };
const auto hinted = fences.begin() + fences_iterator;
auto it = std::find_if(hinted, fences.end(), Tick);
if (it == fences.end()) {
it = std::find_if(fences.begin(), hinted, Tick);
if (it == hinted) {
return nullptr;
}
}
fences_iterator = std::distance(fences.begin(), it) + 1;
if (fences_iterator >= fences.size())
fences_iterator = 0;
auto& fence = *it;
fence->Commit();
return fence.get();
};
VKFence* found_fence = StepFences(false, false);
if (!found_fence) {
// Try again, this time waiting.
found_fence = StepFences(true, false);
if (!found_fence) {
// Allocate new fences and try again.
LOG_INFO(Render_Vulkan, "Allocating new fences {} -> {}", fences.size(),
fences.size() + FENCES_GROW_STEP);
GrowFences(FENCES_GROW_STEP);
found_fence = StepFences(true, false);
ASSERT(found_fence != nullptr);
}
}
return *found_fence;
}
vk::CommandBuffer VKResourceManager::CommitCommandBuffer(VKFence& fence) {
return command_buffer_pool->Commit(fence);
}
void VKResourceManager::GrowFences(std::size_t new_fences_count) {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
const vk::FenceCreateInfo fence_ci;
const std::size_t previous_size = fences.size();
fences.resize(previous_size + new_fences_count);
std::generate(fences.begin() + previous_size, fences.end(), [&]() {
return std::make_unique<VKFence>(device, dev.createFenceUnique(fence_ci, nullptr, dld));
});
}
} // namespace Vulkan

View File

@@ -1,180 +0,0 @@
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstddef>
#include <memory>
#include <vector>
#include "video_core/renderer_vulkan/declarations.h"
namespace Vulkan {
class VKDevice;
class VKFence;
class VKResourceManager;
class CommandBufferPool;
/// Interface for a Vulkan resource
class VKResource {
public:
explicit VKResource();
virtual ~VKResource();
/**
* Signals the object that an owning fence has been signaled.
* @param signaling_fence Fence that signals its usage end.
*/
virtual void OnFenceRemoval(VKFence* signaling_fence) = 0;
};
/**
* Fences take ownership of objects, protecting them from GPU-side or driver-side concurrent access.
* They must be commited from the resource manager. Their usage flow is: commit the fence from the
* resource manager, protect resources with it and use them, send the fence to an execution queue
* and Wait for it if needed and then call Release. Used resources will automatically be signaled
* when they are free to be reused.
* @brief Protects resources for concurrent usage and signals its release.
*/
class VKFence {
friend class VKResourceManager;
public:
explicit VKFence(const VKDevice& device, UniqueFence handle);
~VKFence();
/**
* Waits for the fence to be signaled.
* @warning You must have ownership of the fence and it has to be previously sent to a queue to
* call this function.
*/
void Wait();
/**
* Releases ownership of the fence. Pass after it has been sent to an execution queue.
* Unmanaged usage of the fence after the call will result in undefined behavior because it may
* be being used for something else.
*/
void Release();
/// Protects a resource with this fence.
void Protect(VKResource* resource);
/// Removes protection for a resource.
void Unprotect(const VKResource* resource);
/// Retreives the fence.
operator vk::Fence() const {
return *handle;
}
private:
/// Take ownership of the fence.
void Commit();
/**
* Updates the fence status.
* @warning Waiting for the owner might soft lock the execution.
* @param gpu_wait Wait for the fence to be signaled by the driver.
* @param owner_wait Wait for the owner to signal its freedom.
* @returns True if the fence is free. Waiting for gpu and owner will always return true.
*/
bool Tick(bool gpu_wait, bool owner_wait);
const VKDevice& device; ///< Device handler
UniqueFence handle; ///< Vulkan fence
std::vector<VKResource*> protected_resources; ///< List of resources protected by this fence
bool is_owned = false; ///< The fence has been commited but not released yet.
bool is_used = false; ///< The fence has been commited but it has not been checked to be free.
};
/**
* A fence watch is used to keep track of the usage of a fence and protect a resource or set of
* resources without having to inherit VKResource from their handlers.
*/
class VKFenceWatch final : public VKResource {
public:
explicit VKFenceWatch();
~VKFenceWatch();
/// Waits for the fence to be released.
void Wait();
/**
* Waits for a previous fence and watches a new one.
* @param new_fence New fence to wait to.
*/
void Watch(VKFence& new_fence);
/**
* Checks if it's currently being watched and starts watching it if it's available.
* @returns True if a watch has started, false if it's being watched.
*/
bool TryWatch(VKFence& new_fence);
void OnFenceRemoval(VKFence* signaling_fence) override;
private:
VKFence* fence{}; ///< Fence watching this resource. nullptr when the watch is free.
};
/**
* Handles a pool of resources protected by fences. Manages resource overflow allocating more
* resources.
*/
class VKFencedPool {
public:
explicit VKFencedPool(std::size_t grow_step);
virtual ~VKFencedPool();
protected:
/**
* Commits a free resource and protects it with a fence. It may allocate new resources.
* @param fence Fence that protects the commited resource.
* @returns Index of the resource commited.
*/
std::size_t CommitResource(VKFence& fence);
/// Called when a chunk of resources have to be allocated.
virtual void Allocate(std::size_t begin, std::size_t end) = 0;
private:
/// Manages pool overflow allocating new resources.
std::size_t ManageOverflow();
/// Allocates a new page of resources.
void Grow();
std::size_t grow_step = 0; ///< Number of new resources created after an overflow
std::size_t free_iterator = 0; ///< Hint to where the next free resources is likely to be found
std::vector<std::unique_ptr<VKFenceWatch>> watches; ///< Set of watched resources
};
/**
* The resource manager handles all resources that can be protected with a fence avoiding
* driver-side or GPU-side concurrent usage. Usage is documented in VKFence.
*/
class VKResourceManager final {
public:
explicit VKResourceManager(const VKDevice& device);
~VKResourceManager();
/// Commits a fence. It has to be sent to a queue and released.
VKFence& CommitFence();
/// Commits an unused command buffer and protects it with a fence.
vk::CommandBuffer CommitCommandBuffer(VKFence& fence);
private:
/// Allocates new fences.
void GrowFences(std::size_t new_fences_count);
const VKDevice& device; ///< Device handler.
std::size_t fences_iterator = 0; ///< Index where a free fence is likely to be found.
std::vector<std::unique_ptr<VKFence>> fences; ///< Pool of fences.
std::unique_ptr<CommandBufferPool> command_buffer_pool; ///< Pool of command buffers.
};
} // namespace Vulkan

View File

@@ -1,60 +0,0 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/logging/log.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
namespace Vulkan {
VKScheduler::VKScheduler(const VKDevice& device, VKResourceManager& resource_manager)
: device{device}, resource_manager{resource_manager} {
next_fence = &resource_manager.CommitFence();
AllocateNewContext();
}
VKScheduler::~VKScheduler() = default;
VKExecutionContext VKScheduler::GetExecutionContext() const {
return VKExecutionContext(current_fence, current_cmdbuf);
}
VKExecutionContext VKScheduler::Flush(vk::Semaphore semaphore) {
SubmitExecution(semaphore);
current_fence->Release();
AllocateNewContext();
return GetExecutionContext();
}
VKExecutionContext VKScheduler::Finish(vk::Semaphore semaphore) {
SubmitExecution(semaphore);
current_fence->Wait();
current_fence->Release();
AllocateNewContext();
return GetExecutionContext();
}
void VKScheduler::SubmitExecution(vk::Semaphore semaphore) {
const auto& dld = device.GetDispatchLoader();
current_cmdbuf.end(dld);
const auto queue = device.GetGraphicsQueue();
const vk::SubmitInfo submit_info(0, nullptr, nullptr, 1, &current_cmdbuf, semaphore ? 1u : 0u,
&semaphore);
queue.submit({submit_info}, *current_fence, dld);
}
void VKScheduler::AllocateNewContext() {
current_fence = next_fence;
current_cmdbuf = resource_manager.CommitCommandBuffer(*current_fence);
next_fence = &resource_manager.CommitFence();
const auto& dld = device.GetDispatchLoader();
current_cmdbuf.begin({vk::CommandBufferUsageFlagBits::eOneTimeSubmit}, dld);
}
} // namespace Vulkan

View File

@@ -1,69 +0,0 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
#include "video_core/renderer_vulkan/declarations.h"
namespace Vulkan {
class VKDevice;
class VKExecutionContext;
class VKFence;
class VKResourceManager;
/// The scheduler abstracts command buffer and fence management with an interface that's able to do
/// OpenGL-like operations on Vulkan command buffers.
class VKScheduler {
public:
explicit VKScheduler(const VKDevice& device, VKResourceManager& resource_manager);
~VKScheduler();
/// Gets the current execution context.
[[nodiscard]] VKExecutionContext GetExecutionContext() const;
/// Sends the current execution context to the GPU. It invalidates the current execution context
/// and returns a new one.
VKExecutionContext Flush(vk::Semaphore semaphore = nullptr);
/// Sends the current execution context to the GPU and waits for it to complete. It invalidates
/// the current execution context and returns a new one.
VKExecutionContext Finish(vk::Semaphore semaphore = nullptr);
private:
void SubmitExecution(vk::Semaphore semaphore);
void AllocateNewContext();
const VKDevice& device;
VKResourceManager& resource_manager;
vk::CommandBuffer current_cmdbuf;
VKFence* current_fence = nullptr;
VKFence* next_fence = nullptr;
};
class VKExecutionContext {
friend class VKScheduler;
public:
VKExecutionContext() = default;
VKFence& GetFence() const {
return *fence;
}
vk::CommandBuffer GetCommandBuffer() const {
return cmdbuf;
}
private:
explicit VKExecutionContext(VKFence* fence, vk::CommandBuffer cmdbuf)
: fence{fence}, cmdbuf{cmdbuf} {}
VKFence* fence{};
vk::CommandBuffer cmdbuf;
};
} // namespace Vulkan

View File

@@ -48,7 +48,7 @@ u32 ShaderIR::DecodeMemory(NodeBlock& bb, u32 pc) {
UNIMPLEMENTED_IF_MSG((instr.attribute.fmt20.immediate.Value() % sizeof(u32)) != 0,
"Unaligned attribute loads are not supported");
Tegra::Shader::IpaMode input_mode{Tegra::Shader::IpaInterpMode::Pass,
Tegra::Shader::IpaMode input_mode{Tegra::Shader::IpaInterpMode::Perspective,
Tegra::Shader::IpaSampleMode::Default};
u64 next_element = instr.attribute.fmt20.element;

View File

@@ -135,18 +135,7 @@ u32 ShaderIR::DecodeOther(NodeBlock& bb, u32 pc) {
instr.ipa.sample_mode.Value()};
const Node attr = GetInputAttribute(attribute.index, attribute.element, input_mode);
Node value = attr;
const Tegra::Shader::Attribute::Index index = attribute.index.Value();
if (index >= Tegra::Shader::Attribute::Index::Attribute_0 &&
index <= Tegra::Shader::Attribute::Index::Attribute_31) {
// TODO(Blinkhawk): There are cases where a perspective attribute use PASS.
// In theory by setting them as perspective, OpenGL does the perspective correction.
// A way must figured to reverse the last step of it.
if (input_mode.interpolation_mode == Tegra::Shader::IpaInterpMode::Multiply) {
value = Operation(OperationCode::FMul, PRECISE, value, GetRegister(instr.gpr20));
}
}
value = GetSaturatedFloat(value, instr.ipa.saturate);
const Node value = GetSaturatedFloat(attr, instr.ipa.saturate);
SetRegister(bb, instr.gpr0, value);
break;
@@ -186,4 +175,4 @@ u32 ShaderIR::DecodeOther(NodeBlock& bb, u32 pc) {
return pc;
}
} // namespace VideoCommon::Shader
} // namespace VideoCommon::Shader

View File

@@ -20,9 +20,9 @@ std::pair<Node, s64> FindOperation(const NodeBlock& code, s64 cursor,
return {node, cursor};
}
if (const auto conditional = std::get_if<ConditionalNode>(node)) {
const auto& conditional_code = conditional->GetCode();
const auto [found, internal_cursor] = FindOperation(
conditional_code, static_cast<s64>(conditional_code.size() - 1), operation_code);
const auto& code = conditional->GetCode();
const auto [found, internal_cursor] =
FindOperation(code, static_cast<s64>(code.size() - 1), operation_code);
if (found)
return {found, cursor};
}
@@ -58,8 +58,8 @@ Node ShaderIR::TrackCbuf(Node tracked, const NodeBlock& code, s64 cursor) {
return nullptr;
}
if (const auto conditional = std::get_if<ConditionalNode>(tracked)) {
const auto& conditional_code = conditional->GetCode();
return TrackCbuf(tracked, conditional_code, static_cast<s64>(conditional_code.size()));
const auto& code = conditional->GetCode();
return TrackCbuf(tracked, code, static_cast<s64>(code.size()));
}
return nullptr;
}

View File

@@ -398,7 +398,7 @@ void GraphicsSurfaceWidget::OnUpdate() {
for (unsigned int y = 0; y < surface_height; ++y) {
for (unsigned int x = 0; x < surface_width; ++x) {
Common::Vec4<u8> color;
Math::Vec4<u8> color;
color[0] = texture_data[x + y * surface_width + 0];
color[1] = texture_data[x + y * surface_width + 1];
color[2] = texture_data[x + y * surface_width + 2];