Compare commits

...

67 Commits

Author SHA1 Message Date
yuzubot
f5dc5be691 Android #130 2023-11-12 00:57:13 +00:00
liamwhite
40d4e9543b Merge pull request #11914 from liamwhite/newer-kpagetable
kernel: add KPageTableBase
2023-11-11 09:45:29 -05:00
Liam
875246f5b2 k_page_table: fix shutdown 2023-11-10 12:01:35 -05:00
Liam
b16fefa106 k_page_table: use more precise icache invalidates 2023-11-10 12:01:35 -05:00
Liam
2a255b2d61 kernel: add KPageTableBase
Co-authored-by: Kelebek1 <eeeedddccc@hotmail.co.uk>
2023-11-10 12:01:35 -05:00
liamwhite
2f9487cd38 Merge pull request #11981 from lucasreis1/patch
Allocate resources for test window before getting system info
2023-11-10 10:38:49 -05:00
Lucas Reis
edce713fc9 Allocate resources for test window before getting system info 2023-11-07 22:47:02 -04:00
liamwhite
f75363177e Merge pull request #11977 from SamayXD/patch-1
Update CMakeLists.txt
2023-11-06 16:46:57 -05:00
Samay Navale
4c6217f09b Update CMakeLists.txt 2023-11-07 02:20:29 +05:30
Samay Navale
c95f35ea85 Update CMakeLists.txt
Updated Comments for better readability.
2023-11-07 02:13:15 +05:30
liamwhite
40357098a2 Merge pull request #11896 from liamwhite/crop
renderer_vulkan: fix cropping for presentation
2023-11-06 12:08:03 -05:00
liamwhite
e7f4110791 Merge pull request #11873 from liamwhite/buffer-control
nvdrv: add ioctl command serialization wrapper
2023-11-06 12:07:50 -05:00
liamwhite
ca1dd1862b Merge pull request #11972 from t895/fps-counter-adjustments
android: FPS counter adjustments
2023-11-06 11:09:59 -05:00
Charles Lombardo
737d1cea62 Merge pull request #11974 from t895/ci-fix-again
ci: android: Declare secrets during build step
2023-11-06 11:03:19 -05:00
Charles Lombardo
2f8e237ab7 ci: android: Declare secrets during build step 2023-11-05 21:09:21 -05:00
Charles Lombardo
5191465b0a android: Simplify FPS counter padding 2023-11-05 18:34:27 -05:00
Charles Lombardo
50c604f37f android: Color the FPS counter white 2023-11-05 18:29:00 -05:00
liamwhite
dfbc22c291 Merge pull request #11971 from german77/recent
service: am: Set the correct album program id
2023-11-05 18:27:24 -05:00
german77
a5a3167eba service: am: Set the correct album program id 2023-11-05 17:26:34 -06:00
liamwhite
a423e0f9e0 renderer_vulkan: render on bottom of surface clip when flipped (#11894) 2023-11-05 21:47:35 +01:00
liamwhite
511c1f0c8b Merge pull request #11957 from liamwhite/null2
renderer_null: fix
2023-11-05 13:15:19 -05:00
liamwhite
8369fcd71a Merge pull request #11969 from german77/profile
service: acc: Ensure proper profile size
2023-11-05 13:15:14 -05:00
liamwhite
626916e9a4 Merge pull request #11961 from german77/recent
yuzu: Only store games in the recently played list
2023-11-05 13:15:07 -05:00
german77
507f360a81 yuzu: Only store games in the recently played list 2023-11-05 09:34:16 -06:00
german77
5323d9f6b3 service: acc: Ensure proper profile size 2023-11-05 09:28:22 -06:00
liamwhite
770d4b0b72 Merge pull request #11965 from german77/color
core: hid: Signal color updates
2023-11-04 23:26:24 -04:00
liamwhite
e5fed31009 Merge pull request #11963 from Kelebek1/eol_lf
Convert src/ to LF eol
2023-11-04 23:26:09 -04:00
Narr the Reg
f07484bc64 core: hid: Signal color updates 2023-11-04 14:13:18 -06:00
Kelebek1
78b9956a04 Skip git blame 2023-11-04 18:26:49 +00:00
Kelebek1
90aa937593 Convert files to LF eol 2023-11-04 18:25:40 +00:00
liamwhite
940618a64d Merge pull request #11952 from liamwhite/opus_stereo_count
opus: Allow 0 stereo count
2023-11-04 11:28:47 -04:00
liamwhite
409fa5dda2 Merge pull request #11960 from german77/silence
service: hid: Silence EnableUnintendedHomeButtonInputProtection
2023-11-04 11:14:27 -04:00
liamwhite
211b67668d Merge pull request #11959 from t895/firmware-reload-fix
android: Don't reload log/system after loading firmware/backup
2023-11-04 11:14:21 -04:00
liamwhite
f0cd02b9bd Merge pull request #11881 from liamwhite/sockets-safe-access
sockets: use safe access helpers
2023-11-04 11:14:08 -04:00
liamwhite
34101d8c5e Merge pull request #11885 from liamwhite/stop-nagging-me
qt: remove duplicate exit confirmation setting
2023-11-04 11:14:01 -04:00
german77
bf8d7bc0da service: hid: Silence EnableUnintendedHomeButtonInputProtection 2023-11-03 23:22:28 -06:00
Charles Lombardo
9543adf072 android: Always update FPS counter 2023-11-04 00:04:20 -04:00
Charles Lombardo
036d2686af android: Don't reload log/system after loading firmware/backup 2023-11-03 22:49:31 -04:00
Charles Lombardo
a80e0e7da5 Merge pull request #11954 from t895/log-hardware
android: Log more system information
2023-11-03 21:16:35 -04:00
liamwhite
9631dedea9 Merge pull request #11955 from t895/cntfrq-fix
arm: NativeClock: Special handling for bad system counter clock frequ…
2023-11-03 21:14:01 -04:00
Liam
75de0cadcf renderer_null: fix 2023-11-03 20:54:38 -04:00
Charles Lombardo
4b321c003c arm: NativeClock: Special handling for bad system counter clock frequency reporting
On some devices, checking the system counter clock frequency will return 0. Substitute in the correct values to prevent issues.
2023-11-03 16:21:54 -04:00
Charles Lombardo
0a83047368 android: Log more system information during startup
Logs device manufacturer/model, SoC manufacturer/model where available, and the total system memory
2023-11-03 15:52:01 -04:00
Charles Lombardo
9bb8ac7cb6 android: Fix fetching system memory size from MemoryUtil
We weren't rounding up the value at a unit before (GB, MB, etc) we were rounding up the total bytes and that would do nothing. This fixes that, and the check for total system memory during first emulation start where we tried to check the required system memory against 1 gigabyte.
2023-11-03 15:51:17 -04:00
liamwhite
d6e6ab11b1 Merge pull request #11953 from t895/surface-tweak
android: Update surface parameters on emulation start
2023-11-03 14:35:57 -04:00
Charles Lombardo
b3a1f793c3 android: Update surface parameters on emulation start
This adds a quick update that notifies the render surface if there was a change between surface creation and emulation starting.
2023-11-03 13:31:06 -04:00
Kelebek1
a294beb116 Allow 0 stereo count 2023-11-03 11:45:40 -04:00
liamwhite
eda403388a Merge pull request #11948 from german77/hard_ring
service: hid: Ensure GetNextEntryIndex can't fail
2023-11-03 09:14:17 -04:00
liamwhite
3032980478 Merge pull request #11947 from german77/battery
core: hid: Fix wrong battery values
2023-11-03 09:14:10 -04:00
liamwhite
7f96f4db3f Merge pull request #11943 from liamwhite/silence-logspam
renderer_vulkan: minimize transform feedback support log
2023-11-03 09:14:02 -04:00
liamwhite
a0f9a3ab5b Merge pull request #11936 from liamwhite/romfs-nonsense
romfs: fix extraction of single-directory root
2023-11-03 09:13:46 -04:00
german77
b36fec486e service: hid: Ensure GetNextEntryIndex can't fail 2023-11-02 20:33:19 -06:00
german77
57cf830862 core: hid: Fix wrong battery values 2023-11-02 18:39:08 -06:00
Liam
41701052d3 renderer_vulkan: minimize transform feedback support log 2023-11-01 20:47:08 -04:00
Liam
b0c6bf497a romfs: fix extraction of single-directory root 2023-10-31 23:26:51 -04:00
Liam
6a7123826a qt: remove duplicate exit confirmation setting 2023-10-31 10:31:50 -04:00
Liam
6513a356f0 renderer_vulkan: fix FSR cropping 2023-10-28 11:43:00 -04:00
Liam
65d4a16afd renderer_vulkan: fix cropping for presentation 2023-10-28 00:05:06 -04:00
Liam
ca75c58f43 sockets: use safe access helpers 2023-10-25 14:07:22 -04:00
Liam
723df0f368 nvdrv: rework to remove memcpy 2023-10-25 13:05:56 -04:00
Liam
94b7ac50bb nvdrv: fix up remaining copy calls 2023-10-25 13:05:56 -04:00
Liam
18450ebd78 nvdrv: convert nvmap 2023-10-25 13:05:56 -04:00
Liam
efdb2e8f3d nvdrv: convert codec devices 2023-10-25 13:05:56 -04:00
Liam
7a84a1a974 nvdrv: convert nvhost_gpu 2023-10-25 13:05:56 -04:00
Liam
789d9c8af9 nvdrv: convert nvhost_ctrl 2023-10-25 13:05:56 -04:00
Liam
4df063209b nvdrv: convert nvhost_ctrl_gpu 2023-10-25 13:05:55 -04:00
Liam
6256e3ca8e nvdrv: add ioctl command serialization, convert nvhost_as_gpu 2023-10-25 13:05:55 -04:00
109 changed files with 8929 additions and 6487 deletions

5
.git-blame-ignore-revs Normal file
View File

@@ -0,0 +1,5 @@
# SPDX-FileCopyrightText: 2023 yuzu Emulator Project
# SPDX-License-Identifier: GPL-2.0-or-later
# CRLF -> LF
90aa937593e53a5d5e070fb623b228578b0b225f

View File

@@ -40,11 +40,11 @@ jobs:
sudo apt-get install -y ccache apksigner glslang-dev glslang-tools
- name: Build
run: ./.ci/scripts/android/build.sh
- name: Copy and sign artifacts
env:
ANDROID_KEYSTORE_B64: ${{ secrets.ANDROID_KEYSTORE_B64 }}
ANDROID_KEY_ALIAS: ${{ secrets.ANDROID_KEY_ALIAS }}
ANDROID_KEYSTORE_PASS: ${{ secrets.ANDROID_KEYSTORE_PASS }}
- name: Copy artifacts
run: ./.ci/scripts/android/upload.sh
- name: Upload
uses: actions/upload-artifact@v3

View File

@@ -1,3 +1,11 @@
| Pull Request | Commit | Title | Author | Merged? |
|----|----|----|----|----|
End of merge log. You can find the original README.md below the break.
-----
<!--
SPDX-FileCopyrightText: 2018 yuzu Emulator Project
SPDX-License-Identifier: GPL-2.0-or-later

View File

@@ -21,7 +21,7 @@ if (MSVC)
# Avoid windows.h from including some usually unused libs like winsocks.h, since this might cause some redefinition errors.
add_definitions(-DWIN32_LEAN_AND_MEAN)
# Ensure that projects build with Unicode support.
# Ensure that projects are built with Unicode support.
add_definitions(-DUNICODE -D_UNICODE)
# /W4 - Level 4 warnings
@@ -54,11 +54,11 @@ if (MSVC)
/GT
# Modules
/experimental:module- # Disable module support explicitly due to conflicts with precompiled headers
/experimental:module- # Explicitly disable module support due to conflicts with precompiled headers.
# External headers diagnostics
/external:anglebrackets # Treats all headers included by #include <header>, where the header file is enclosed in angle brackets (< >), as external headers
/external:W0 # Sets the default warning level to 0 for external headers, effectively turning off warnings for external headers
/external:W0 # Sets the default warning level to 0 for external headers, effectively disabling warnings for them.
# Warnings
/W4

View File

@@ -252,7 +252,7 @@ object NativeLibrary {
external fun reloadKeys(): Boolean
external fun initializeSystem()
external fun initializeSystem(reload: Boolean)
external fun defaultCPUCore(): Int

View File

@@ -11,6 +11,7 @@ import java.io.File
import org.yuzu.yuzu_emu.utils.DirectoryInitialization
import org.yuzu.yuzu_emu.utils.DocumentsTree
import org.yuzu.yuzu_emu.utils.GpuDriverHelper
import org.yuzu.yuzu_emu.utils.Log
fun Context.getPublicFilesDir(): File = getExternalFilesDir(null) ?: filesDir
@@ -49,6 +50,7 @@ class YuzuApplication : Application() {
DirectoryInitialization.start()
GpuDriverHelper.initializeDriverParameters()
NativeLibrary.logDeviceInfo()
Log.logDeviceInfo()
createNotificationChannels()
}

View File

@@ -107,7 +107,7 @@ class EmulationActivity : AppCompatActivity(), SensorEventListener {
val preferences = PreferenceManager.getDefaultSharedPreferences(YuzuApplication.appContext)
if (!preferences.getBoolean(Settings.PREF_MEMORY_WARNING_SHOWN, false)) {
if (MemoryUtil.isLessThan(MemoryUtil.REQUIRED_MEMORY, MemoryUtil.Gb)) {
if (MemoryUtil.isLessThan(MemoryUtil.REQUIRED_MEMORY, MemoryUtil.totalMemory)) {
Toast.makeText(
this,
getString(

View File

@@ -10,7 +10,6 @@ import android.content.DialogInterface
import android.content.SharedPreferences
import android.content.pm.ActivityInfo
import android.content.res.Configuration
import android.graphics.Color
import android.net.Uri
import android.os.Bundle
import android.os.Handler
@@ -155,7 +154,6 @@ class EmulationFragment : Fragment(), SurfaceHolder.Callback {
}
binding.surfaceEmulation.holder.addCallback(this)
binding.showFpsText.setTextColor(Color.YELLOW)
binding.doneControlConfig.setOnClickListener { stopConfiguringControls() }
binding.drawerLayout.addDrawerListener(object : DrawerListener {
@@ -312,6 +310,8 @@ class EmulationFragment : Fragment(), SurfaceHolder.Callback {
ViewUtils.showView(binding.surfaceInputOverlay)
ViewUtils.hideView(binding.loadingIndicator)
emulationState.updateSurface()
// Setup overlay
updateShowFpsOverlay()
}
@@ -412,12 +412,12 @@ class EmulationFragment : Fragment(), SurfaceHolder.Callback {
val FRAMETIME = 2
val SPEED = 3
perfStatsUpdater = {
if (emulationViewModel.emulationStarted.value == true) {
if (emulationViewModel.emulationStarted.value) {
val perfStats = NativeLibrary.getPerfStats()
if (perfStats[FPS] > 0 && _binding != null) {
if (_binding != null) {
binding.showFpsText.text = String.format("FPS: %.1f", perfStats[FPS])
}
perfStatsUpdateHandler.postDelayed(perfStatsUpdater!!, 100)
perfStatsUpdateHandler.postDelayed(perfStatsUpdater!!, 800)
}
}
perfStatsUpdateHandler.post(perfStatsUpdater!!)
@@ -462,7 +462,6 @@ class EmulationFragment : Fragment(), SurfaceHolder.Callback {
if (it.orientation == FoldingFeature.Orientation.HORIZONTAL) {
// Restrict emulation and overlays to the top of the screen
binding.emulationContainer.layoutParams.height = it.bounds.top
binding.overlayContainer.layoutParams.height = it.bounds.top
// Restrict input and menu drawer to the bottom of the screen
binding.inputContainer.layoutParams.height = it.bounds.bottom
binding.inGameMenu.layoutParams.height = it.bounds.bottom
@@ -476,7 +475,6 @@ class EmulationFragment : Fragment(), SurfaceHolder.Callback {
if (!isFolding) {
binding.emulationContainer.layoutParams.height = ViewGroup.LayoutParams.MATCH_PARENT
binding.inputContainer.layoutParams.height = ViewGroup.LayoutParams.MATCH_PARENT
binding.overlayContainer.layoutParams.height = ViewGroup.LayoutParams.MATCH_PARENT
binding.inGameMenu.layoutParams.height = ViewGroup.LayoutParams.MATCH_PARENT
isInFoldableLayout = false
updateOrientation()
@@ -484,7 +482,6 @@ class EmulationFragment : Fragment(), SurfaceHolder.Callback {
}
binding.emulationContainer.requestLayout()
binding.inputContainer.requestLayout()
binding.overlayContainer.requestLayout()
binding.inGameMenu.requestLayout()
}
@@ -710,24 +707,6 @@ class EmulationFragment : Fragment(), SurfaceHolder.Callback {
}
v.setPadding(left, cutInsets.top, right, 0)
// Ensure FPS text doesn't get cut off by rounded display corners
val sidePadding = resources.getDimensionPixelSize(R.dimen.spacing_xtralarge)
if (cutInsets.left == 0) {
binding.showFpsText.setPadding(
sidePadding,
cutInsets.top,
cutInsets.right,
cutInsets.bottom
)
} else {
binding.showFpsText.setPadding(
cutInsets.left,
cutInsets.top,
cutInsets.right,
cutInsets.bottom
)
}
windowInsets
}
}
@@ -804,6 +783,13 @@ class EmulationFragment : Fragment(), SurfaceHolder.Callback {
}
}
@Synchronized
fun updateSurface() {
if (surface != null) {
NativeLibrary.surfaceChanged(surface)
}
}
@Synchronized
fun clearSurface() {
if (surface == null) {

View File

@@ -403,7 +403,7 @@ class MainActivity : AppCompatActivity(), ThemeProvider {
} else {
firmwarePath.deleteRecursively()
cacheFirmwareDir.copyRecursively(firmwarePath, true)
NativeLibrary.initializeSystem()
NativeLibrary.initializeSystem(true)
getString(R.string.save_file_imported_success)
}
} catch (e: Exception) {
@@ -649,7 +649,7 @@ class MainActivity : AppCompatActivity(), ThemeProvider {
}
// Reinitialize relevant data
NativeLibrary.initializeSystem()
NativeLibrary.initializeSystem(true)
gamesViewModel.reloadGames(false)
return@newInstance getString(R.string.user_data_import_success)

View File

@@ -15,7 +15,7 @@ object DirectoryInitialization {
fun start() {
if (!areDirectoriesReady) {
initializeInternalStorage()
NativeLibrary.initializeSystem()
NativeLibrary.initializeSystem(false)
areDirectoriesReady = true
}
}

View File

@@ -3,6 +3,8 @@
package org.yuzu.yuzu_emu.utils
import android.os.Build
object Log {
// Tracks whether we should share the old log or the current log
var gameLaunched = false
@@ -16,4 +18,14 @@ object Log {
external fun error(message: String)
external fun critical(message: String)
fun logDeviceInfo() {
info("Device Manufacturer - ${Build.MANUFACTURER}")
info("Device Model - ${Build.MODEL}")
if (Build.VERSION.SDK_INT > Build.VERSION_CODES.R) {
info("SoC Manufacturer - ${Build.SOC_MANUFACTURER}")
info("SoC Model - ${Build.SOC_MODEL}")
}
info("Total System Memory - ${MemoryUtil.getDeviceRAM()}")
}
}

View File

@@ -27,7 +27,7 @@ object MemoryUtil {
const val Pb = Tb * 1024
const val Eb = Pb * 1024
private fun bytesToSizeUnit(size: Float): String =
private fun bytesToSizeUnit(size: Float, roundUp: Boolean = false): String =
when {
size < Kb -> {
context.getString(
@@ -39,63 +39,59 @@ object MemoryUtil {
size < Mb -> {
context.getString(
R.string.memory_formatted,
(size / Kb).hundredths,
if (roundUp) ceil(size / Kb) else (size / Kb).hundredths,
context.getString(R.string.memory_kilobyte)
)
}
size < Gb -> {
context.getString(
R.string.memory_formatted,
(size / Mb).hundredths,
if (roundUp) ceil(size / Mb) else (size / Mb).hundredths,
context.getString(R.string.memory_megabyte)
)
}
size < Tb -> {
context.getString(
R.string.memory_formatted,
(size / Gb).hundredths,
if (roundUp) ceil(size / Gb) else (size / Gb).hundredths,
context.getString(R.string.memory_gigabyte)
)
}
size < Pb -> {
context.getString(
R.string.memory_formatted,
(size / Tb).hundredths,
if (roundUp) ceil(size / Tb) else (size / Tb).hundredths,
context.getString(R.string.memory_terabyte)
)
}
size < Eb -> {
context.getString(
R.string.memory_formatted,
(size / Pb).hundredths,
if (roundUp) ceil(size / Pb) else (size / Pb).hundredths,
context.getString(R.string.memory_petabyte)
)
}
else -> {
context.getString(
R.string.memory_formatted,
(size / Eb).hundredths,
if (roundUp) ceil(size / Eb) else (size / Eb).hundredths,
context.getString(R.string.memory_exabyte)
)
}
}
// Devices are unlikely to have 0.5GB increments of memory so we'll just round up to account for
// the potential error created by memInfo.totalMem
private val totalMemory: Float
val totalMemory: Float
get() {
val memInfo = ActivityManager.MemoryInfo()
with(context.getSystemService(Context.ACTIVITY_SERVICE) as ActivityManager) {
getMemoryInfo(memInfo)
}
return ceil(
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.UPSIDE_DOWN_CAKE) {
memInfo.advertisedMem.toFloat()
} else {
memInfo.totalMem.toFloat()
}
)
return if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.UPSIDE_DOWN_CAKE) {
memInfo.advertisedMem.toFloat()
} else {
memInfo.totalMem.toFloat()
}
}
fun isLessThan(minimum: Int, size: Float): Boolean =
@@ -109,5 +105,7 @@ object MemoryUtil {
else -> totalMemory < Kb && totalMemory < minimum
}
fun getDeviceRAM(): String = bytesToSizeUnit(totalMemory)
// Devices are unlikely to have 0.5GB increments of memory so we'll just round up to account for
// the potential error created by memInfo.totalMem
fun getDeviceRAM(): String = bytesToSizeUnit(totalMemory, true)
}

View File

@@ -199,8 +199,8 @@ bool EmulationSession::IsPaused() const {
return m_is_running && m_is_paused;
}
const Core::PerfStatsResults& EmulationSession::PerfStats() const {
std::scoped_lock m_perf_stats_lock(m_perf_stats_mutex);
const Core::PerfStatsResults& EmulationSession::PerfStats() {
m_perf_stats = m_system.GetAndResetPerfStats();
return m_perf_stats;
}
@@ -247,11 +247,13 @@ void EmulationSession::ConfigureFilesystemProvider(const std::string& filepath)
}
}
void EmulationSession::InitializeSystem() {
// Initialize logging system
Common::Log::Initialize();
Common::Log::SetColorConsoleBackendEnabled(true);
Common::Log::Start();
void EmulationSession::InitializeSystem(bool reload) {
if (!reload) {
// Initialize logging system
Common::Log::Initialize();
Common::Log::SetColorConsoleBackendEnabled(true);
Common::Log::Start();
}
// Initialize filesystem.
m_system.SetFilesystem(m_vfs);
@@ -381,11 +383,6 @@ void EmulationSession::RunEmulation() {
break;
}
}
{
// Refresh performance stats.
std::scoped_lock m_perf_stats_lock(m_perf_stats_mutex);
m_perf_stats = m_system.GetAndResetPerfStats();
}
}
}
@@ -667,12 +664,15 @@ void Java_org_yuzu_yuzu_1emu_NativeLibrary_onTouchReleased(JNIEnv* env, jclass c
}
}
void Java_org_yuzu_yuzu_1emu_NativeLibrary_initializeSystem(JNIEnv* env, jclass clazz) {
void Java_org_yuzu_yuzu_1emu_NativeLibrary_initializeSystem(JNIEnv* env, jclass clazz,
jboolean reload) {
// Create the default config.ini.
Config{};
// Initialize the emulated system.
EmulationSession::GetInstance().System().Initialize();
EmulationSession::GetInstance().InitializeSystem();
if (!reload) {
EmulationSession::GetInstance().System().Initialize();
}
EmulationSession::GetInstance().InitializeSystem(reload);
}
jint Java_org_yuzu_yuzu_1emu_NativeLibrary_defaultCPUCore(JNIEnv* env, jclass clazz) {

View File

@@ -41,9 +41,9 @@ public:
void RunEmulation();
void ShutdownEmulation();
const Core::PerfStatsResults& PerfStats() const;
const Core::PerfStatsResults& PerfStats();
void ConfigureFilesystemProvider(const std::string& filepath);
void InitializeSystem();
void InitializeSystem(bool reload);
Core::SystemResultStatus InitializeEmulation(const std::string& filepath);
bool IsHandheldOnly();
@@ -80,6 +80,5 @@ private:
// Synchronization
std::condition_variable_any m_cv;
mutable std::mutex m_perf_stats_mutex;
mutable std::mutex m_mutex;
};

View File

@@ -134,16 +134,18 @@
<FrameLayout
android:id="@+id/overlay_container"
android:layout_width="match_parent"
android:layout_height="match_parent">
android:layout_height="match_parent"
android:fitsSystemWindows="true">
<TextView
<com.google.android.material.textview.MaterialTextView
android:id="@+id/show_fps_text"
style="@style/TextAppearance.Material3.BodyMedium"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="left"
android:clickable="false"
android:focusable="false"
android:shadowColor="@android:color/black"
android:paddingHorizontal="20dp"
android:textColor="@android:color/white"
android:textSize="12sp"
tools:ignore="RtlHardcoded" />

View File

@@ -1,107 +1,107 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/adsp/apps/opus/opus_decode_object.h"
#include "common/assert.h"
namespace AudioCore::ADSP::OpusDecoder {
namespace {
bool IsValidChannelCount(u32 channel_count) {
return channel_count == 1 || channel_count == 2;
}
} // namespace
u32 OpusDecodeObject::GetWorkBufferSize(u32 channel_count) {
if (!IsValidChannelCount(channel_count)) {
return 0;
}
return static_cast<u32>(sizeof(OpusDecodeObject)) + opus_decoder_get_size(channel_count);
}
OpusDecodeObject& OpusDecodeObject::Initialize(u64 buffer, u64 buffer2) {
auto* new_decoder = reinterpret_cast<OpusDecodeObject*>(buffer);
auto* comparison = reinterpret_cast<OpusDecodeObject*>(buffer2);
if (new_decoder->magic == DecodeObjectMagic) {
if (!new_decoder->initialized ||
(new_decoder->initialized && new_decoder->self == comparison)) {
new_decoder->state_valid = true;
}
} else {
new_decoder->initialized = false;
new_decoder->state_valid = true;
}
return *new_decoder;
}
s32 OpusDecodeObject::InitializeDecoder(u32 sample_rate, u32 channel_count) {
if (!state_valid) {
return OPUS_INVALID_STATE;
}
if (initialized) {
return OPUS_OK;
}
// Unfortunately libopus does not expose the OpusDecoder struct publicly, so we can't include
// it in this class. Nintendo does not allocate memory, which is why we have a workbuffer
// provided.
// We could use _create and have libopus allocate it for us, but then we have to separately
// track which decoder is being used between this and multistream in order to call the correct
// destroy from the host side.
// This is a bit cringe, but is safe as these objects are only ever initialized inside the given
// workbuffer, and GetWorkBufferSize will guarantee there's enough space to follow.
decoder = (LibOpusDecoder*)(this + 1);
s32 ret = opus_decoder_init(decoder, sample_rate, channel_count);
if (ret == OPUS_OK) {
magic = DecodeObjectMagic;
initialized = true;
state_valid = true;
self = this;
final_range = 0;
}
return ret;
}
s32 OpusDecodeObject::Shutdown() {
if (!state_valid) {
return OPUS_INVALID_STATE;
}
if (initialized) {
magic = 0x0;
initialized = false;
state_valid = false;
self = nullptr;
final_range = 0;
decoder = nullptr;
}
return OPUS_OK;
}
s32 OpusDecodeObject::ResetDecoder() {
return opus_decoder_ctl(decoder, OPUS_RESET_STATE);
}
s32 OpusDecodeObject::Decode(u32& out_sample_count, u64 output_data, u64 output_data_size,
u64 input_data, u64 input_data_size) {
ASSERT(initialized);
out_sample_count = 0;
if (!state_valid) {
return OPUS_INVALID_STATE;
}
auto ret_code_or_samples = opus_decode(
decoder, reinterpret_cast<const u8*>(input_data), static_cast<opus_int32>(input_data_size),
reinterpret_cast<opus_int16*>(output_data), static_cast<opus_int32>(output_data_size), 0);
if (ret_code_or_samples < OPUS_OK) {
return ret_code_or_samples;
}
out_sample_count = ret_code_or_samples;
return opus_decoder_ctl(decoder, OPUS_GET_FINAL_RANGE_REQUEST, &final_range);
}
} // namespace AudioCore::ADSP::OpusDecoder
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/adsp/apps/opus/opus_decode_object.h"
#include "common/assert.h"
namespace AudioCore::ADSP::OpusDecoder {
namespace {
bool IsValidChannelCount(u32 channel_count) {
return channel_count == 1 || channel_count == 2;
}
} // namespace
u32 OpusDecodeObject::GetWorkBufferSize(u32 channel_count) {
if (!IsValidChannelCount(channel_count)) {
return 0;
}
return static_cast<u32>(sizeof(OpusDecodeObject)) + opus_decoder_get_size(channel_count);
}
OpusDecodeObject& OpusDecodeObject::Initialize(u64 buffer, u64 buffer2) {
auto* new_decoder = reinterpret_cast<OpusDecodeObject*>(buffer);
auto* comparison = reinterpret_cast<OpusDecodeObject*>(buffer2);
if (new_decoder->magic == DecodeObjectMagic) {
if (!new_decoder->initialized ||
(new_decoder->initialized && new_decoder->self == comparison)) {
new_decoder->state_valid = true;
}
} else {
new_decoder->initialized = false;
new_decoder->state_valid = true;
}
return *new_decoder;
}
s32 OpusDecodeObject::InitializeDecoder(u32 sample_rate, u32 channel_count) {
if (!state_valid) {
return OPUS_INVALID_STATE;
}
if (initialized) {
return OPUS_OK;
}
// Unfortunately libopus does not expose the OpusDecoder struct publicly, so we can't include
// it in this class. Nintendo does not allocate memory, which is why we have a workbuffer
// provided.
// We could use _create and have libopus allocate it for us, but then we have to separately
// track which decoder is being used between this and multistream in order to call the correct
// destroy from the host side.
// This is a bit cringe, but is safe as these objects are only ever initialized inside the given
// workbuffer, and GetWorkBufferSize will guarantee there's enough space to follow.
decoder = (LibOpusDecoder*)(this + 1);
s32 ret = opus_decoder_init(decoder, sample_rate, channel_count);
if (ret == OPUS_OK) {
magic = DecodeObjectMagic;
initialized = true;
state_valid = true;
self = this;
final_range = 0;
}
return ret;
}
s32 OpusDecodeObject::Shutdown() {
if (!state_valid) {
return OPUS_INVALID_STATE;
}
if (initialized) {
magic = 0x0;
initialized = false;
state_valid = false;
self = nullptr;
final_range = 0;
decoder = nullptr;
}
return OPUS_OK;
}
s32 OpusDecodeObject::ResetDecoder() {
return opus_decoder_ctl(decoder, OPUS_RESET_STATE);
}
s32 OpusDecodeObject::Decode(u32& out_sample_count, u64 output_data, u64 output_data_size,
u64 input_data, u64 input_data_size) {
ASSERT(initialized);
out_sample_count = 0;
if (!state_valid) {
return OPUS_INVALID_STATE;
}
auto ret_code_or_samples = opus_decode(
decoder, reinterpret_cast<const u8*>(input_data), static_cast<opus_int32>(input_data_size),
reinterpret_cast<opus_int16*>(output_data), static_cast<opus_int32>(output_data_size), 0);
if (ret_code_or_samples < OPUS_OK) {
return ret_code_or_samples;
}
out_sample_count = ret_code_or_samples;
return opus_decoder_ctl(decoder, OPUS_GET_FINAL_RANGE_REQUEST, &final_range);
}
} // namespace AudioCore::ADSP::OpusDecoder

View File

@@ -30,9 +30,9 @@ bool IsValidMultiStreamChannelCount(u32 channel_count) {
return channel_count <= OpusStreamCountMax;
}
bool IsValidMultiStreamStreamCounts(s32 total_stream_count, s32 sterero_stream_count) {
bool IsValidMultiStreamStreamCounts(s32 total_stream_count, s32 stereo_stream_count) {
return IsValidMultiStreamChannelCount(total_stream_count) && total_stream_count > 0 &&
sterero_stream_count > 0 && sterero_stream_count <= total_stream_count;
stereo_stream_count >= 0 && stereo_stream_count <= total_stream_count;
}
} // namespace

View File

@@ -1,111 +1,111 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/adsp/apps/opus/opus_multistream_decode_object.h"
#include "common/assert.h"
namespace AudioCore::ADSP::OpusDecoder {
namespace {
bool IsValidChannelCount(u32 channel_count) {
return channel_count == 1 || channel_count == 2;
}
bool IsValidStreamCounts(u32 total_stream_count, u32 stereo_stream_count) {
return total_stream_count > 0 && stereo_stream_count > 0 &&
stereo_stream_count <= total_stream_count && IsValidChannelCount(total_stream_count);
}
} // namespace
u32 OpusMultiStreamDecodeObject::GetWorkBufferSize(u32 total_stream_count,
u32 stereo_stream_count) {
if (IsValidStreamCounts(total_stream_count, stereo_stream_count)) {
return static_cast<u32>(sizeof(OpusMultiStreamDecodeObject)) +
opus_multistream_decoder_get_size(total_stream_count, stereo_stream_count);
}
return 0;
}
OpusMultiStreamDecodeObject& OpusMultiStreamDecodeObject::Initialize(u64 buffer, u64 buffer2) {
auto* new_decoder = reinterpret_cast<OpusMultiStreamDecodeObject*>(buffer);
auto* comparison = reinterpret_cast<OpusMultiStreamDecodeObject*>(buffer2);
if (new_decoder->magic == DecodeMultiStreamObjectMagic) {
if (!new_decoder->initialized ||
(new_decoder->initialized && new_decoder->self == comparison)) {
new_decoder->state_valid = true;
}
} else {
new_decoder->initialized = false;
new_decoder->state_valid = true;
}
return *new_decoder;
}
s32 OpusMultiStreamDecodeObject::InitializeDecoder(u32 sample_rate, u32 total_stream_count,
u32 channel_count, u32 stereo_stream_count,
u8* mappings) {
if (!state_valid) {
return OPUS_INVALID_STATE;
}
if (initialized) {
return OPUS_OK;
}
// See OpusDecodeObject::InitializeDecoder for an explanation of this
decoder = (LibOpusMSDecoder*)(this + 1);
s32 ret = opus_multistream_decoder_init(decoder, sample_rate, channel_count, total_stream_count,
stereo_stream_count, mappings);
if (ret == OPUS_OK) {
magic = DecodeMultiStreamObjectMagic;
initialized = true;
state_valid = true;
self = this;
final_range = 0;
}
return ret;
}
s32 OpusMultiStreamDecodeObject::Shutdown() {
if (!state_valid) {
return OPUS_INVALID_STATE;
}
if (initialized) {
magic = 0x0;
initialized = false;
state_valid = false;
self = nullptr;
final_range = 0;
decoder = nullptr;
}
return OPUS_OK;
}
s32 OpusMultiStreamDecodeObject::ResetDecoder() {
return opus_multistream_decoder_ctl(decoder, OPUS_RESET_STATE);
}
s32 OpusMultiStreamDecodeObject::Decode(u32& out_sample_count, u64 output_data,
u64 output_data_size, u64 input_data, u64 input_data_size) {
ASSERT(initialized);
out_sample_count = 0;
if (!state_valid) {
return OPUS_INVALID_STATE;
}
auto ret_code_or_samples = opus_multistream_decode(
decoder, reinterpret_cast<const u8*>(input_data), static_cast<opus_int32>(input_data_size),
reinterpret_cast<opus_int16*>(output_data), static_cast<opus_int32>(output_data_size), 0);
if (ret_code_or_samples < OPUS_OK) {
return ret_code_or_samples;
}
out_sample_count = ret_code_or_samples;
return opus_multistream_decoder_ctl(decoder, OPUS_GET_FINAL_RANGE_REQUEST, &final_range);
}
} // namespace AudioCore::ADSP::OpusDecoder
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/adsp/apps/opus/opus_multistream_decode_object.h"
#include "common/assert.h"
namespace AudioCore::ADSP::OpusDecoder {
namespace {
bool IsValidChannelCount(u32 channel_count) {
return channel_count == 1 || channel_count == 2;
}
bool IsValidStreamCounts(u32 total_stream_count, u32 stereo_stream_count) {
return total_stream_count > 0 && stereo_stream_count > 0 &&
stereo_stream_count <= total_stream_count && IsValidChannelCount(total_stream_count);
}
} // namespace
u32 OpusMultiStreamDecodeObject::GetWorkBufferSize(u32 total_stream_count,
u32 stereo_stream_count) {
if (IsValidStreamCounts(total_stream_count, stereo_stream_count)) {
return static_cast<u32>(sizeof(OpusMultiStreamDecodeObject)) +
opus_multistream_decoder_get_size(total_stream_count, stereo_stream_count);
}
return 0;
}
OpusMultiStreamDecodeObject& OpusMultiStreamDecodeObject::Initialize(u64 buffer, u64 buffer2) {
auto* new_decoder = reinterpret_cast<OpusMultiStreamDecodeObject*>(buffer);
auto* comparison = reinterpret_cast<OpusMultiStreamDecodeObject*>(buffer2);
if (new_decoder->magic == DecodeMultiStreamObjectMagic) {
if (!new_decoder->initialized ||
(new_decoder->initialized && new_decoder->self == comparison)) {
new_decoder->state_valid = true;
}
} else {
new_decoder->initialized = false;
new_decoder->state_valid = true;
}
return *new_decoder;
}
s32 OpusMultiStreamDecodeObject::InitializeDecoder(u32 sample_rate, u32 total_stream_count,
u32 channel_count, u32 stereo_stream_count,
u8* mappings) {
if (!state_valid) {
return OPUS_INVALID_STATE;
}
if (initialized) {
return OPUS_OK;
}
// See OpusDecodeObject::InitializeDecoder for an explanation of this
decoder = (LibOpusMSDecoder*)(this + 1);
s32 ret = opus_multistream_decoder_init(decoder, sample_rate, channel_count, total_stream_count,
stereo_stream_count, mappings);
if (ret == OPUS_OK) {
magic = DecodeMultiStreamObjectMagic;
initialized = true;
state_valid = true;
self = this;
final_range = 0;
}
return ret;
}
s32 OpusMultiStreamDecodeObject::Shutdown() {
if (!state_valid) {
return OPUS_INVALID_STATE;
}
if (initialized) {
magic = 0x0;
initialized = false;
state_valid = false;
self = nullptr;
final_range = 0;
decoder = nullptr;
}
return OPUS_OK;
}
s32 OpusMultiStreamDecodeObject::ResetDecoder() {
return opus_multistream_decoder_ctl(decoder, OPUS_RESET_STATE);
}
s32 OpusMultiStreamDecodeObject::Decode(u32& out_sample_count, u64 output_data,
u64 output_data_size, u64 input_data, u64 input_data_size) {
ASSERT(initialized);
out_sample_count = 0;
if (!state_valid) {
return OPUS_INVALID_STATE;
}
auto ret_code_or_samples = opus_multistream_decode(
decoder, reinterpret_cast<const u8*>(input_data), static_cast<opus_int32>(input_data_size),
reinterpret_cast<opus_int16*>(output_data), static_cast<opus_int32>(output_data_size), 0);
if (ret_code_or_samples < OPUS_OK) {
return ret_code_or_samples;
}
out_sample_count = ret_code_or_samples;
return opus_multistream_decoder_ctl(decoder, OPUS_GET_FINAL_RANGE_REQUEST, &final_range);
}
} // namespace AudioCore::ADSP::OpusDecoder

View File

@@ -1,179 +1,179 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/opus/decoder.h"
#include "audio_core/opus/hardware_opus.h"
#include "audio_core/opus/parameters.h"
#include "common/alignment.h"
#include "common/swap.h"
#include "core/core.h"
namespace AudioCore::OpusDecoder {
using namespace Service::Audio;
namespace {
OpusPacketHeader ReverseHeader(OpusPacketHeader header) {
OpusPacketHeader out;
out.size = Common::swap32(header.size);
out.final_range = Common::swap32(header.final_range);
return out;
}
} // namespace
OpusDecoder::OpusDecoder(Core::System& system_, HardwareOpus& hardware_opus_)
: system{system_}, hardware_opus{hardware_opus_} {}
OpusDecoder::~OpusDecoder() {
if (decode_object_initialized) {
hardware_opus.ShutdownDecodeObject(shared_buffer.get(), shared_buffer_size);
}
}
Result OpusDecoder::Initialize(OpusParametersEx& params, Kernel::KTransferMemory* transfer_memory,
u64 transfer_memory_size) {
auto frame_size{params.use_large_frame_size ? 5760 : 1920};
shared_buffer_size = transfer_memory_size;
shared_buffer = std::make_unique<u8[]>(shared_buffer_size);
shared_memory_mapped = true;
buffer_size =
Common::AlignUp((frame_size * params.channel_count) / (48'000 / params.sample_rate), 16);
out_data = {shared_buffer.get() + shared_buffer_size - buffer_size, buffer_size};
size_t in_data_size{0x600u};
in_data = {out_data.data() - in_data_size, in_data_size};
ON_RESULT_FAILURE {
if (shared_memory_mapped) {
shared_memory_mapped = false;
ASSERT(R_SUCCEEDED(hardware_opus.UnmapMemory(shared_buffer.get(), shared_buffer_size)));
}
};
R_TRY(hardware_opus.InitializeDecodeObject(params.sample_rate, params.channel_count,
shared_buffer.get(), shared_buffer_size));
sample_rate = params.sample_rate;
channel_count = params.channel_count;
use_large_frame_size = params.use_large_frame_size;
decode_object_initialized = true;
R_SUCCEED();
}
Result OpusDecoder::Initialize(OpusMultiStreamParametersEx& params,
Kernel::KTransferMemory* transfer_memory, u64 transfer_memory_size) {
auto frame_size{params.use_large_frame_size ? 5760 : 1920};
shared_buffer_size = transfer_memory_size;
shared_buffer = std::make_unique<u8[]>(shared_buffer_size);
shared_memory_mapped = true;
buffer_size =
Common::AlignUp((frame_size * params.channel_count) / (48'000 / params.sample_rate), 16);
out_data = {shared_buffer.get() + shared_buffer_size - buffer_size, buffer_size};
size_t in_data_size{Common::AlignUp(1500ull * params.total_stream_count, 64u)};
in_data = {out_data.data() - in_data_size, in_data_size};
ON_RESULT_FAILURE {
if (shared_memory_mapped) {
shared_memory_mapped = false;
ASSERT(R_SUCCEEDED(hardware_opus.UnmapMemory(shared_buffer.get(), shared_buffer_size)));
}
};
R_TRY(hardware_opus.InitializeMultiStreamDecodeObject(
params.sample_rate, params.channel_count, params.total_stream_count,
params.stereo_stream_count, params.mappings.data(), shared_buffer.get(),
shared_buffer_size));
sample_rate = params.sample_rate;
channel_count = params.channel_count;
total_stream_count = params.total_stream_count;
stereo_stream_count = params.stereo_stream_count;
use_large_frame_size = params.use_large_frame_size;
decode_object_initialized = true;
R_SUCCEED();
}
Result OpusDecoder::DecodeInterleaved(u32* out_data_size, u64* out_time_taken,
u32* out_sample_count, std::span<const u8> input_data,
std::span<u8> output_data, bool reset) {
u32 out_samples;
u64 time_taken{};
R_UNLESS(input_data.size_bytes() > sizeof(OpusPacketHeader), ResultInputDataTooSmall);
auto* header_p{reinterpret_cast<const OpusPacketHeader*>(input_data.data())};
OpusPacketHeader header{ReverseHeader(*header_p)};
R_UNLESS(in_data.size_bytes() >= header.size &&
header.size + sizeof(OpusPacketHeader) <= input_data.size_bytes(),
ResultBufferTooSmall);
if (!shared_memory_mapped) {
R_TRY(hardware_opus.MapMemory(shared_buffer.get(), shared_buffer_size));
shared_memory_mapped = true;
}
std::memcpy(in_data.data(), input_data.data() + sizeof(OpusPacketHeader), header.size);
R_TRY(hardware_opus.DecodeInterleaved(out_samples, out_data.data(), out_data.size_bytes(),
channel_count, in_data.data(), header.size,
shared_buffer.get(), time_taken, reset));
std::memcpy(output_data.data(), out_data.data(), out_samples * channel_count * sizeof(s16));
*out_data_size = header.size + sizeof(OpusPacketHeader);
*out_sample_count = out_samples;
if (out_time_taken) {
*out_time_taken = time_taken / 1000;
}
R_SUCCEED();
}
Result OpusDecoder::SetContext([[maybe_unused]] std::span<const u8> context) {
R_SUCCEED_IF(shared_memory_mapped);
shared_memory_mapped = true;
R_RETURN(hardware_opus.MapMemory(shared_buffer.get(), shared_buffer_size));
}
Result OpusDecoder::DecodeInterleavedForMultiStream(u32* out_data_size, u64* out_time_taken,
u32* out_sample_count,
std::span<const u8> input_data,
std::span<u8> output_data, bool reset) {
u32 out_samples;
u64 time_taken{};
R_UNLESS(input_data.size_bytes() > sizeof(OpusPacketHeader), ResultInputDataTooSmall);
auto* header_p{reinterpret_cast<const OpusPacketHeader*>(input_data.data())};
OpusPacketHeader header{ReverseHeader(*header_p)};
LOG_ERROR(Service_Audio, "header size 0x{:X} input data size 0x{:X} in_data size 0x{:X}",
header.size, input_data.size_bytes(), in_data.size_bytes());
R_UNLESS(in_data.size_bytes() >= header.size &&
header.size + sizeof(OpusPacketHeader) <= input_data.size_bytes(),
ResultBufferTooSmall);
if (!shared_memory_mapped) {
R_TRY(hardware_opus.MapMemory(shared_buffer.get(), shared_buffer_size));
shared_memory_mapped = true;
}
std::memcpy(in_data.data(), input_data.data() + sizeof(OpusPacketHeader), header.size);
R_TRY(hardware_opus.DecodeInterleavedForMultiStream(
out_samples, out_data.data(), out_data.size_bytes(), channel_count, in_data.data(),
header.size, shared_buffer.get(), time_taken, reset));
std::memcpy(output_data.data(), out_data.data(), out_samples * channel_count * sizeof(s16));
*out_data_size = header.size + sizeof(OpusPacketHeader);
*out_sample_count = out_samples;
if (out_time_taken) {
*out_time_taken = time_taken / 1000;
}
R_SUCCEED();
}
} // namespace AudioCore::OpusDecoder
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/opus/decoder.h"
#include "audio_core/opus/hardware_opus.h"
#include "audio_core/opus/parameters.h"
#include "common/alignment.h"
#include "common/swap.h"
#include "core/core.h"
namespace AudioCore::OpusDecoder {
using namespace Service::Audio;
namespace {
OpusPacketHeader ReverseHeader(OpusPacketHeader header) {
OpusPacketHeader out;
out.size = Common::swap32(header.size);
out.final_range = Common::swap32(header.final_range);
return out;
}
} // namespace
OpusDecoder::OpusDecoder(Core::System& system_, HardwareOpus& hardware_opus_)
: system{system_}, hardware_opus{hardware_opus_} {}
OpusDecoder::~OpusDecoder() {
if (decode_object_initialized) {
hardware_opus.ShutdownDecodeObject(shared_buffer.get(), shared_buffer_size);
}
}
Result OpusDecoder::Initialize(OpusParametersEx& params, Kernel::KTransferMemory* transfer_memory,
u64 transfer_memory_size) {
auto frame_size{params.use_large_frame_size ? 5760 : 1920};
shared_buffer_size = transfer_memory_size;
shared_buffer = std::make_unique<u8[]>(shared_buffer_size);
shared_memory_mapped = true;
buffer_size =
Common::AlignUp((frame_size * params.channel_count) / (48'000 / params.sample_rate), 16);
out_data = {shared_buffer.get() + shared_buffer_size - buffer_size, buffer_size};
size_t in_data_size{0x600u};
in_data = {out_data.data() - in_data_size, in_data_size};
ON_RESULT_FAILURE {
if (shared_memory_mapped) {
shared_memory_mapped = false;
ASSERT(R_SUCCEEDED(hardware_opus.UnmapMemory(shared_buffer.get(), shared_buffer_size)));
}
};
R_TRY(hardware_opus.InitializeDecodeObject(params.sample_rate, params.channel_count,
shared_buffer.get(), shared_buffer_size));
sample_rate = params.sample_rate;
channel_count = params.channel_count;
use_large_frame_size = params.use_large_frame_size;
decode_object_initialized = true;
R_SUCCEED();
}
Result OpusDecoder::Initialize(OpusMultiStreamParametersEx& params,
Kernel::KTransferMemory* transfer_memory, u64 transfer_memory_size) {
auto frame_size{params.use_large_frame_size ? 5760 : 1920};
shared_buffer_size = transfer_memory_size;
shared_buffer = std::make_unique<u8[]>(shared_buffer_size);
shared_memory_mapped = true;
buffer_size =
Common::AlignUp((frame_size * params.channel_count) / (48'000 / params.sample_rate), 16);
out_data = {shared_buffer.get() + shared_buffer_size - buffer_size, buffer_size};
size_t in_data_size{Common::AlignUp(1500ull * params.total_stream_count, 64u)};
in_data = {out_data.data() - in_data_size, in_data_size};
ON_RESULT_FAILURE {
if (shared_memory_mapped) {
shared_memory_mapped = false;
ASSERT(R_SUCCEEDED(hardware_opus.UnmapMemory(shared_buffer.get(), shared_buffer_size)));
}
};
R_TRY(hardware_opus.InitializeMultiStreamDecodeObject(
params.sample_rate, params.channel_count, params.total_stream_count,
params.stereo_stream_count, params.mappings.data(), shared_buffer.get(),
shared_buffer_size));
sample_rate = params.sample_rate;
channel_count = params.channel_count;
total_stream_count = params.total_stream_count;
stereo_stream_count = params.stereo_stream_count;
use_large_frame_size = params.use_large_frame_size;
decode_object_initialized = true;
R_SUCCEED();
}
Result OpusDecoder::DecodeInterleaved(u32* out_data_size, u64* out_time_taken,
u32* out_sample_count, std::span<const u8> input_data,
std::span<u8> output_data, bool reset) {
u32 out_samples;
u64 time_taken{};
R_UNLESS(input_data.size_bytes() > sizeof(OpusPacketHeader), ResultInputDataTooSmall);
auto* header_p{reinterpret_cast<const OpusPacketHeader*>(input_data.data())};
OpusPacketHeader header{ReverseHeader(*header_p)};
R_UNLESS(in_data.size_bytes() >= header.size &&
header.size + sizeof(OpusPacketHeader) <= input_data.size_bytes(),
ResultBufferTooSmall);
if (!shared_memory_mapped) {
R_TRY(hardware_opus.MapMemory(shared_buffer.get(), shared_buffer_size));
shared_memory_mapped = true;
}
std::memcpy(in_data.data(), input_data.data() + sizeof(OpusPacketHeader), header.size);
R_TRY(hardware_opus.DecodeInterleaved(out_samples, out_data.data(), out_data.size_bytes(),
channel_count, in_data.data(), header.size,
shared_buffer.get(), time_taken, reset));
std::memcpy(output_data.data(), out_data.data(), out_samples * channel_count * sizeof(s16));
*out_data_size = header.size + sizeof(OpusPacketHeader);
*out_sample_count = out_samples;
if (out_time_taken) {
*out_time_taken = time_taken / 1000;
}
R_SUCCEED();
}
Result OpusDecoder::SetContext([[maybe_unused]] std::span<const u8> context) {
R_SUCCEED_IF(shared_memory_mapped);
shared_memory_mapped = true;
R_RETURN(hardware_opus.MapMemory(shared_buffer.get(), shared_buffer_size));
}
Result OpusDecoder::DecodeInterleavedForMultiStream(u32* out_data_size, u64* out_time_taken,
u32* out_sample_count,
std::span<const u8> input_data,
std::span<u8> output_data, bool reset) {
u32 out_samples;
u64 time_taken{};
R_UNLESS(input_data.size_bytes() > sizeof(OpusPacketHeader), ResultInputDataTooSmall);
auto* header_p{reinterpret_cast<const OpusPacketHeader*>(input_data.data())};
OpusPacketHeader header{ReverseHeader(*header_p)};
LOG_ERROR(Service_Audio, "header size 0x{:X} input data size 0x{:X} in_data size 0x{:X}",
header.size, input_data.size_bytes(), in_data.size_bytes());
R_UNLESS(in_data.size_bytes() >= header.size &&
header.size + sizeof(OpusPacketHeader) <= input_data.size_bytes(),
ResultBufferTooSmall);
if (!shared_memory_mapped) {
R_TRY(hardware_opus.MapMemory(shared_buffer.get(), shared_buffer_size));
shared_memory_mapped = true;
}
std::memcpy(in_data.data(), input_data.data() + sizeof(OpusPacketHeader), header.size);
R_TRY(hardware_opus.DecodeInterleavedForMultiStream(
out_samples, out_data.data(), out_data.size_bytes(), channel_count, in_data.data(),
header.size, shared_buffer.get(), time_taken, reset));
std::memcpy(output_data.data(), out_data.data(), out_samples * channel_count * sizeof(s16));
*out_data_size = header.size + sizeof(OpusPacketHeader);
*out_sample_count = out_samples;
if (out_time_taken) {
*out_time_taken = time_taken / 1000;
}
R_SUCCEED();
}
} // namespace AudioCore::OpusDecoder

View File

@@ -1,53 +1,53 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <span>
#include "audio_core/opus/parameters.h"
#include "common/common_types.h"
#include "core/hle/kernel/k_transfer_memory.h"
#include "core/hle/service/audio/errors.h"
namespace Core {
class System;
}
namespace AudioCore::OpusDecoder {
class HardwareOpus;
class OpusDecoder {
public:
explicit OpusDecoder(Core::System& system, HardwareOpus& hardware_opus_);
~OpusDecoder();
Result Initialize(OpusParametersEx& params, Kernel::KTransferMemory* transfer_memory,
u64 transfer_memory_size);
Result Initialize(OpusMultiStreamParametersEx& params, Kernel::KTransferMemory* transfer_memory,
u64 transfer_memory_size);
Result DecodeInterleaved(u32* out_data_size, u64* out_time_taken, u32* out_sample_count,
std::span<const u8> input_data, std::span<u8> output_data, bool reset);
Result SetContext([[maybe_unused]] std::span<const u8> context);
Result DecodeInterleavedForMultiStream(u32* out_data_size, u64* out_time_taken,
u32* out_sample_count, std::span<const u8> input_data,
std::span<u8> output_data, bool reset);
private:
Core::System& system;
HardwareOpus& hardware_opus;
std::unique_ptr<u8[]> shared_buffer{};
u64 shared_buffer_size;
std::span<u8> in_data{};
std::span<u8> out_data{};
u64 buffer_size{};
s32 sample_rate{};
s32 channel_count{};
bool use_large_frame_size{false};
s32 total_stream_count{};
s32 stereo_stream_count{};
bool shared_memory_mapped{false};
bool decode_object_initialized{false};
};
} // namespace AudioCore::OpusDecoder
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <span>
#include "audio_core/opus/parameters.h"
#include "common/common_types.h"
#include "core/hle/kernel/k_transfer_memory.h"
#include "core/hle/service/audio/errors.h"
namespace Core {
class System;
}
namespace AudioCore::OpusDecoder {
class HardwareOpus;
class OpusDecoder {
public:
explicit OpusDecoder(Core::System& system, HardwareOpus& hardware_opus_);
~OpusDecoder();
Result Initialize(OpusParametersEx& params, Kernel::KTransferMemory* transfer_memory,
u64 transfer_memory_size);
Result Initialize(OpusMultiStreamParametersEx& params, Kernel::KTransferMemory* transfer_memory,
u64 transfer_memory_size);
Result DecodeInterleaved(u32* out_data_size, u64* out_time_taken, u32* out_sample_count,
std::span<const u8> input_data, std::span<u8> output_data, bool reset);
Result SetContext([[maybe_unused]] std::span<const u8> context);
Result DecodeInterleavedForMultiStream(u32* out_data_size, u64* out_time_taken,
u32* out_sample_count, std::span<const u8> input_data,
std::span<u8> output_data, bool reset);
private:
Core::System& system;
HardwareOpus& hardware_opus;
std::unique_ptr<u8[]> shared_buffer{};
u64 shared_buffer_size;
std::span<u8> in_data{};
std::span<u8> out_data{};
u64 buffer_size{};
s32 sample_rate{};
s32 channel_count{};
bool use_large_frame_size{false};
s32 total_stream_count{};
s32 stereo_stream_count{};
bool shared_memory_mapped{false};
bool decode_object_initialized{false};
};
} // namespace AudioCore::OpusDecoder

View File

@@ -1,102 +1,102 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/adsp/apps/opus/opus_decoder.h"
#include "audio_core/opus/decoder_manager.h"
#include "common/alignment.h"
#include "core/core.h"
namespace AudioCore::OpusDecoder {
using namespace Service::Audio;
namespace {
bool IsValidChannelCount(u32 channel_count) {
return channel_count == 1 || channel_count == 2;
}
bool IsValidMultiStreamChannelCount(u32 channel_count) {
return channel_count > 0 && channel_count <= OpusStreamCountMax;
}
bool IsValidSampleRate(u32 sample_rate) {
return sample_rate == 8'000 || sample_rate == 12'000 || sample_rate == 16'000 ||
sample_rate == 24'000 || sample_rate == 48'000;
}
bool IsValidStreamCount(u32 channel_count, u32 total_stream_count, u32 stereo_stream_count) {
return total_stream_count > 0 && stereo_stream_count > 0 &&
stereo_stream_count <= total_stream_count &&
total_stream_count + stereo_stream_count <= channel_count;
}
} // namespace
OpusDecoderManager::OpusDecoderManager(Core::System& system_)
: system{system_}, hardware_opus{system} {
for (u32 i = 0; i < MaxChannels; i++) {
required_workbuffer_sizes[i] = hardware_opus.GetWorkBufferSize(1 + i);
}
}
Result OpusDecoderManager::GetWorkBufferSize(OpusParameters& params, u64& out_size) {
OpusParametersEx ex{
.sample_rate = params.sample_rate,
.channel_count = params.channel_count,
.use_large_frame_size = false,
};
R_RETURN(GetWorkBufferSizeExEx(ex, out_size));
}
Result OpusDecoderManager::GetWorkBufferSizeEx(OpusParametersEx& params, u64& out_size) {
R_RETURN(GetWorkBufferSizeExEx(params, out_size));
}
Result OpusDecoderManager::GetWorkBufferSizeExEx(OpusParametersEx& params, u64& out_size) {
R_UNLESS(IsValidChannelCount(params.channel_count), ResultInvalidOpusChannelCount);
R_UNLESS(IsValidSampleRate(params.sample_rate), ResultInvalidOpusSampleRate);
auto work_buffer_size{required_workbuffer_sizes[params.channel_count - 1]};
auto frame_size{params.use_large_frame_size ? 5760 : 1920};
work_buffer_size +=
Common::AlignUp((frame_size * params.channel_count) / (48'000 / params.sample_rate), 64);
out_size = work_buffer_size + 0x600;
R_SUCCEED();
}
Result OpusDecoderManager::GetWorkBufferSizeForMultiStream(OpusMultiStreamParameters& params,
u64& out_size) {
OpusMultiStreamParametersEx ex{
.sample_rate = params.sample_rate,
.channel_count = params.channel_count,
.total_stream_count = params.total_stream_count,
.stereo_stream_count = params.stereo_stream_count,
.use_large_frame_size = false,
.mappings = {},
};
R_RETURN(GetWorkBufferSizeForMultiStreamExEx(ex, out_size));
}
Result OpusDecoderManager::GetWorkBufferSizeForMultiStreamEx(OpusMultiStreamParametersEx& params,
u64& out_size) {
R_RETURN(GetWorkBufferSizeForMultiStreamExEx(params, out_size));
}
Result OpusDecoderManager::GetWorkBufferSizeForMultiStreamExEx(OpusMultiStreamParametersEx& params,
u64& out_size) {
R_UNLESS(IsValidMultiStreamChannelCount(params.channel_count), ResultInvalidOpusChannelCount);
R_UNLESS(IsValidSampleRate(params.sample_rate), ResultInvalidOpusSampleRate);
R_UNLESS(IsValidStreamCount(params.channel_count, params.total_stream_count,
params.stereo_stream_count),
ResultInvalidOpusSampleRate);
auto work_buffer_size{hardware_opus.GetWorkBufferSizeForMultiStream(
params.total_stream_count, params.stereo_stream_count)};
auto frame_size{params.use_large_frame_size ? 5760 : 1920};
work_buffer_size += Common::AlignUp(1500 * params.total_stream_count, 64);
work_buffer_size +=
Common::AlignUp((frame_size * params.channel_count) / (48'000 / params.sample_rate), 64);
out_size = work_buffer_size;
R_SUCCEED();
}
} // namespace AudioCore::OpusDecoder
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/adsp/apps/opus/opus_decoder.h"
#include "audio_core/opus/decoder_manager.h"
#include "common/alignment.h"
#include "core/core.h"
namespace AudioCore::OpusDecoder {
using namespace Service::Audio;
namespace {
bool IsValidChannelCount(u32 channel_count) {
return channel_count == 1 || channel_count == 2;
}
bool IsValidMultiStreamChannelCount(u32 channel_count) {
return channel_count > 0 && channel_count <= OpusStreamCountMax;
}
bool IsValidSampleRate(u32 sample_rate) {
return sample_rate == 8'000 || sample_rate == 12'000 || sample_rate == 16'000 ||
sample_rate == 24'000 || sample_rate == 48'000;
}
bool IsValidStreamCount(u32 channel_count, u32 total_stream_count, u32 stereo_stream_count) {
return total_stream_count > 0 && static_cast<s32>(stereo_stream_count) >= 0 &&
stereo_stream_count <= total_stream_count &&
total_stream_count + stereo_stream_count <= channel_count;
}
} // namespace
OpusDecoderManager::OpusDecoderManager(Core::System& system_)
: system{system_}, hardware_opus{system} {
for (u32 i = 0; i < MaxChannels; i++) {
required_workbuffer_sizes[i] = hardware_opus.GetWorkBufferSize(1 + i);
}
}
Result OpusDecoderManager::GetWorkBufferSize(OpusParameters& params, u64& out_size) {
OpusParametersEx ex{
.sample_rate = params.sample_rate,
.channel_count = params.channel_count,
.use_large_frame_size = false,
};
R_RETURN(GetWorkBufferSizeExEx(ex, out_size));
}
Result OpusDecoderManager::GetWorkBufferSizeEx(OpusParametersEx& params, u64& out_size) {
R_RETURN(GetWorkBufferSizeExEx(params, out_size));
}
Result OpusDecoderManager::GetWorkBufferSizeExEx(OpusParametersEx& params, u64& out_size) {
R_UNLESS(IsValidChannelCount(params.channel_count), ResultInvalidOpusChannelCount);
R_UNLESS(IsValidSampleRate(params.sample_rate), ResultInvalidOpusSampleRate);
auto work_buffer_size{required_workbuffer_sizes[params.channel_count - 1]};
auto frame_size{params.use_large_frame_size ? 5760 : 1920};
work_buffer_size +=
Common::AlignUp((frame_size * params.channel_count) / (48'000 / params.sample_rate), 64);
out_size = work_buffer_size + 0x600;
R_SUCCEED();
}
Result OpusDecoderManager::GetWorkBufferSizeForMultiStream(OpusMultiStreamParameters& params,
u64& out_size) {
OpusMultiStreamParametersEx ex{
.sample_rate = params.sample_rate,
.channel_count = params.channel_count,
.total_stream_count = params.total_stream_count,
.stereo_stream_count = params.stereo_stream_count,
.use_large_frame_size = false,
.mappings = {},
};
R_RETURN(GetWorkBufferSizeForMultiStreamExEx(ex, out_size));
}
Result OpusDecoderManager::GetWorkBufferSizeForMultiStreamEx(OpusMultiStreamParametersEx& params,
u64& out_size) {
R_RETURN(GetWorkBufferSizeForMultiStreamExEx(params, out_size));
}
Result OpusDecoderManager::GetWorkBufferSizeForMultiStreamExEx(OpusMultiStreamParametersEx& params,
u64& out_size) {
R_UNLESS(IsValidMultiStreamChannelCount(params.channel_count), ResultInvalidOpusChannelCount);
R_UNLESS(IsValidSampleRate(params.sample_rate), ResultInvalidOpusSampleRate);
R_UNLESS(IsValidStreamCount(params.channel_count, params.total_stream_count,
params.stereo_stream_count),
ResultInvalidOpusSampleRate);
auto work_buffer_size{hardware_opus.GetWorkBufferSizeForMultiStream(
params.total_stream_count, params.stereo_stream_count)};
auto frame_size{params.use_large_frame_size ? 5760 : 1920};
work_buffer_size += Common::AlignUp(1500 * params.total_stream_count, 64);
work_buffer_size +=
Common::AlignUp((frame_size * params.channel_count) / (48'000 / params.sample_rate), 64);
out_size = work_buffer_size;
R_SUCCEED();
}
} // namespace AudioCore::OpusDecoder

View File

@@ -1,38 +1,38 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "audio_core/opus/hardware_opus.h"
#include "audio_core/opus/parameters.h"
#include "common/common_types.h"
#include "core/hle/service/audio/errors.h"
namespace Core {
class System;
}
namespace AudioCore::OpusDecoder {
class OpusDecoderManager {
public:
OpusDecoderManager(Core::System& system);
HardwareOpus& GetHardwareOpus() {
return hardware_opus;
}
Result GetWorkBufferSize(OpusParameters& params, u64& out_size);
Result GetWorkBufferSizeEx(OpusParametersEx& params, u64& out_size);
Result GetWorkBufferSizeExEx(OpusParametersEx& params, u64& out_size);
Result GetWorkBufferSizeForMultiStream(OpusMultiStreamParameters& params, u64& out_size);
Result GetWorkBufferSizeForMultiStreamEx(OpusMultiStreamParametersEx& params, u64& out_size);
Result GetWorkBufferSizeForMultiStreamExEx(OpusMultiStreamParametersEx& params, u64& out_size);
private:
Core::System& system;
HardwareOpus hardware_opus;
std::array<u64, MaxChannels> required_workbuffer_sizes{};
};
} // namespace AudioCore::OpusDecoder
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "audio_core/opus/hardware_opus.h"
#include "audio_core/opus/parameters.h"
#include "common/common_types.h"
#include "core/hle/service/audio/errors.h"
namespace Core {
class System;
}
namespace AudioCore::OpusDecoder {
class OpusDecoderManager {
public:
OpusDecoderManager(Core::System& system);
HardwareOpus& GetHardwareOpus() {
return hardware_opus;
}
Result GetWorkBufferSize(OpusParameters& params, u64& out_size);
Result GetWorkBufferSizeEx(OpusParametersEx& params, u64& out_size);
Result GetWorkBufferSizeExEx(OpusParametersEx& params, u64& out_size);
Result GetWorkBufferSizeForMultiStream(OpusMultiStreamParameters& params, u64& out_size);
Result GetWorkBufferSizeForMultiStreamEx(OpusMultiStreamParametersEx& params, u64& out_size);
Result GetWorkBufferSizeForMultiStreamExEx(OpusMultiStreamParametersEx& params, u64& out_size);
private:
Core::System& system;
HardwareOpus hardware_opus;
std::array<u64, MaxChannels> required_workbuffer_sizes{};
};
} // namespace AudioCore::OpusDecoder

View File

@@ -1,241 +1,241 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include "audio_core/audio_core.h"
#include "audio_core/opus/hardware_opus.h"
#include "core/core.h"
namespace AudioCore::OpusDecoder {
namespace {
using namespace Service::Audio;
static constexpr Result ResultCodeFromLibOpusErrorCode(u64 error_code) {
s32 error{static_cast<s32>(error_code)};
ASSERT(error <= OPUS_OK);
switch (error) {
case OPUS_ALLOC_FAIL:
R_THROW(ResultLibOpusAllocFail);
case OPUS_INVALID_STATE:
R_THROW(ResultLibOpusInvalidState);
case OPUS_UNIMPLEMENTED:
R_THROW(ResultLibOpusUnimplemented);
case OPUS_INVALID_PACKET:
R_THROW(ResultLibOpusInvalidPacket);
case OPUS_INTERNAL_ERROR:
R_THROW(ResultLibOpusInternalError);
case OPUS_BUFFER_TOO_SMALL:
R_THROW(ResultBufferTooSmall);
case OPUS_BAD_ARG:
R_THROW(ResultLibOpusBadArg);
case OPUS_OK:
R_RETURN(ResultSuccess);
}
UNREACHABLE();
}
} // namespace
HardwareOpus::HardwareOpus(Core::System& system_)
: system{system_}, opus_decoder{system.AudioCore().ADSP().OpusDecoder()} {
opus_decoder.SetSharedMemory(shared_memory);
}
u64 HardwareOpus::GetWorkBufferSize(u32 channel) {
if (!opus_decoder.IsRunning()) {
return 0;
}
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = channel;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::GetWorkBufferSize);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::GetWorkBufferSizeOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::GetWorkBufferSizeOK, msg);
return 0;
}
return shared_memory.dsp_return_data[0];
}
u64 HardwareOpus::GetWorkBufferSizeForMultiStream(u32 total_stream_count, u32 stereo_stream_count) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = total_stream_count;
shared_memory.host_send_data[1] = stereo_stream_count;
opus_decoder.Send(ADSP::Direction::DSP,
ADSP::OpusDecoder::Message::GetWorkBufferSizeForMultiStream);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::GetWorkBufferSizeForMultiStreamOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::GetWorkBufferSizeForMultiStreamOK, msg);
return 0;
}
return shared_memory.dsp_return_data[0];
}
Result HardwareOpus::InitializeDecodeObject(u32 sample_rate, u32 channel_count, void* buffer,
u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
shared_memory.host_send_data[2] = sample_rate;
shared_memory.host_send_data[3] = channel_count;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::InitializeDecodeObject);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::InitializeDecodeObjectOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::InitializeDecodeObjectOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
R_RETURN(ResultCodeFromLibOpusErrorCode(shared_memory.dsp_return_data[0]));
}
Result HardwareOpus::InitializeMultiStreamDecodeObject(u32 sample_rate, u32 channel_count,
u32 total_stream_count,
u32 stereo_stream_count, void* mappings,
void* buffer, u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
shared_memory.host_send_data[2] = sample_rate;
shared_memory.host_send_data[3] = channel_count;
shared_memory.host_send_data[4] = total_stream_count;
shared_memory.host_send_data[5] = stereo_stream_count;
ASSERT(channel_count <= MaxChannels);
std::memcpy(shared_memory.channel_mapping.data(), mappings, channel_count * sizeof(u8));
opus_decoder.Send(ADSP::Direction::DSP,
ADSP::OpusDecoder::Message::InitializeMultiStreamDecodeObject);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::InitializeMultiStreamDecodeObjectOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::InitializeMultiStreamDecodeObjectOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
R_RETURN(ResultCodeFromLibOpusErrorCode(shared_memory.dsp_return_data[0]));
}
Result HardwareOpus::ShutdownDecodeObject(void* buffer, u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::ShutdownDecodeObject);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
ASSERT_MSG(msg == ADSP::OpusDecoder::Message::ShutdownDecodeObjectOK,
"Expected Opus shutdown code {}, got {}",
ADSP::OpusDecoder::Message::ShutdownDecodeObjectOK, msg);
R_RETURN(ResultCodeFromLibOpusErrorCode(shared_memory.dsp_return_data[0]));
}
Result HardwareOpus::ShutdownMultiStreamDecodeObject(void* buffer, u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
opus_decoder.Send(ADSP::Direction::DSP,
ADSP::OpusDecoder::Message::ShutdownMultiStreamDecodeObject);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
ASSERT_MSG(msg == ADSP::OpusDecoder::Message::ShutdownMultiStreamDecodeObjectOK,
"Expected Opus shutdown code {}, got {}",
ADSP::OpusDecoder::Message::ShutdownMultiStreamDecodeObjectOK, msg);
R_RETURN(ResultCodeFromLibOpusErrorCode(shared_memory.dsp_return_data[0]));
}
Result HardwareOpus::DecodeInterleaved(u32& out_sample_count, void* output_data,
u64 output_data_size, u32 channel_count, void* input_data,
u64 input_data_size, void* buffer, u64& out_time_taken,
bool reset) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = (u64)input_data;
shared_memory.host_send_data[2] = input_data_size;
shared_memory.host_send_data[3] = (u64)output_data;
shared_memory.host_send_data[4] = output_data_size;
shared_memory.host_send_data[5] = 0;
shared_memory.host_send_data[6] = reset;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::DecodeInterleaved);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::DecodeInterleavedOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::DecodeInterleavedOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
auto error_code{static_cast<s32>(shared_memory.dsp_return_data[0])};
if (error_code == OPUS_OK) {
out_sample_count = static_cast<u32>(shared_memory.dsp_return_data[1]);
out_time_taken = 1000 * shared_memory.dsp_return_data[2];
}
R_RETURN(ResultCodeFromLibOpusErrorCode(error_code));
}
Result HardwareOpus::DecodeInterleavedForMultiStream(u32& out_sample_count, void* output_data,
u64 output_data_size, u32 channel_count,
void* input_data, u64 input_data_size,
void* buffer, u64& out_time_taken,
bool reset) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = (u64)input_data;
shared_memory.host_send_data[2] = input_data_size;
shared_memory.host_send_data[3] = (u64)output_data;
shared_memory.host_send_data[4] = output_data_size;
shared_memory.host_send_data[5] = 0;
shared_memory.host_send_data[6] = reset;
opus_decoder.Send(ADSP::Direction::DSP,
ADSP::OpusDecoder::Message::DecodeInterleavedForMultiStream);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::DecodeInterleavedForMultiStreamOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::DecodeInterleavedForMultiStreamOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
auto error_code{static_cast<s32>(shared_memory.dsp_return_data[0])};
if (error_code == OPUS_OK) {
out_sample_count = static_cast<u32>(shared_memory.dsp_return_data[1]);
out_time_taken = 1000 * shared_memory.dsp_return_data[2];
}
R_RETURN(ResultCodeFromLibOpusErrorCode(error_code));
}
Result HardwareOpus::MapMemory(void* buffer, u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::MapMemory);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::MapMemoryOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::MapMemoryOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
R_SUCCEED();
}
Result HardwareOpus::UnmapMemory(void* buffer, u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::UnmapMemory);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::UnmapMemoryOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::UnmapMemoryOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
R_SUCCEED();
}
} // namespace AudioCore::OpusDecoder
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include "audio_core/audio_core.h"
#include "audio_core/opus/hardware_opus.h"
#include "core/core.h"
namespace AudioCore::OpusDecoder {
namespace {
using namespace Service::Audio;
static constexpr Result ResultCodeFromLibOpusErrorCode(u64 error_code) {
s32 error{static_cast<s32>(error_code)};
ASSERT(error <= OPUS_OK);
switch (error) {
case OPUS_ALLOC_FAIL:
R_THROW(ResultLibOpusAllocFail);
case OPUS_INVALID_STATE:
R_THROW(ResultLibOpusInvalidState);
case OPUS_UNIMPLEMENTED:
R_THROW(ResultLibOpusUnimplemented);
case OPUS_INVALID_PACKET:
R_THROW(ResultLibOpusInvalidPacket);
case OPUS_INTERNAL_ERROR:
R_THROW(ResultLibOpusInternalError);
case OPUS_BUFFER_TOO_SMALL:
R_THROW(ResultBufferTooSmall);
case OPUS_BAD_ARG:
R_THROW(ResultLibOpusBadArg);
case OPUS_OK:
R_RETURN(ResultSuccess);
}
UNREACHABLE();
}
} // namespace
HardwareOpus::HardwareOpus(Core::System& system_)
: system{system_}, opus_decoder{system.AudioCore().ADSP().OpusDecoder()} {
opus_decoder.SetSharedMemory(shared_memory);
}
u64 HardwareOpus::GetWorkBufferSize(u32 channel) {
if (!opus_decoder.IsRunning()) {
return 0;
}
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = channel;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::GetWorkBufferSize);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::GetWorkBufferSizeOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::GetWorkBufferSizeOK, msg);
return 0;
}
return shared_memory.dsp_return_data[0];
}
u64 HardwareOpus::GetWorkBufferSizeForMultiStream(u32 total_stream_count, u32 stereo_stream_count) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = total_stream_count;
shared_memory.host_send_data[1] = stereo_stream_count;
opus_decoder.Send(ADSP::Direction::DSP,
ADSP::OpusDecoder::Message::GetWorkBufferSizeForMultiStream);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::GetWorkBufferSizeForMultiStreamOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::GetWorkBufferSizeForMultiStreamOK, msg);
return 0;
}
return shared_memory.dsp_return_data[0];
}
Result HardwareOpus::InitializeDecodeObject(u32 sample_rate, u32 channel_count, void* buffer,
u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
shared_memory.host_send_data[2] = sample_rate;
shared_memory.host_send_data[3] = channel_count;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::InitializeDecodeObject);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::InitializeDecodeObjectOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::InitializeDecodeObjectOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
R_RETURN(ResultCodeFromLibOpusErrorCode(shared_memory.dsp_return_data[0]));
}
Result HardwareOpus::InitializeMultiStreamDecodeObject(u32 sample_rate, u32 channel_count,
u32 total_stream_count,
u32 stereo_stream_count, void* mappings,
void* buffer, u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
shared_memory.host_send_data[2] = sample_rate;
shared_memory.host_send_data[3] = channel_count;
shared_memory.host_send_data[4] = total_stream_count;
shared_memory.host_send_data[5] = stereo_stream_count;
ASSERT(channel_count <= MaxChannels);
std::memcpy(shared_memory.channel_mapping.data(), mappings, channel_count * sizeof(u8));
opus_decoder.Send(ADSP::Direction::DSP,
ADSP::OpusDecoder::Message::InitializeMultiStreamDecodeObject);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::InitializeMultiStreamDecodeObjectOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::InitializeMultiStreamDecodeObjectOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
R_RETURN(ResultCodeFromLibOpusErrorCode(shared_memory.dsp_return_data[0]));
}
Result HardwareOpus::ShutdownDecodeObject(void* buffer, u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::ShutdownDecodeObject);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
ASSERT_MSG(msg == ADSP::OpusDecoder::Message::ShutdownDecodeObjectOK,
"Expected Opus shutdown code {}, got {}",
ADSP::OpusDecoder::Message::ShutdownDecodeObjectOK, msg);
R_RETURN(ResultCodeFromLibOpusErrorCode(shared_memory.dsp_return_data[0]));
}
Result HardwareOpus::ShutdownMultiStreamDecodeObject(void* buffer, u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
opus_decoder.Send(ADSP::Direction::DSP,
ADSP::OpusDecoder::Message::ShutdownMultiStreamDecodeObject);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
ASSERT_MSG(msg == ADSP::OpusDecoder::Message::ShutdownMultiStreamDecodeObjectOK,
"Expected Opus shutdown code {}, got {}",
ADSP::OpusDecoder::Message::ShutdownMultiStreamDecodeObjectOK, msg);
R_RETURN(ResultCodeFromLibOpusErrorCode(shared_memory.dsp_return_data[0]));
}
Result HardwareOpus::DecodeInterleaved(u32& out_sample_count, void* output_data,
u64 output_data_size, u32 channel_count, void* input_data,
u64 input_data_size, void* buffer, u64& out_time_taken,
bool reset) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = (u64)input_data;
shared_memory.host_send_data[2] = input_data_size;
shared_memory.host_send_data[3] = (u64)output_data;
shared_memory.host_send_data[4] = output_data_size;
shared_memory.host_send_data[5] = 0;
shared_memory.host_send_data[6] = reset;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::DecodeInterleaved);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::DecodeInterleavedOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::DecodeInterleavedOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
auto error_code{static_cast<s32>(shared_memory.dsp_return_data[0])};
if (error_code == OPUS_OK) {
out_sample_count = static_cast<u32>(shared_memory.dsp_return_data[1]);
out_time_taken = 1000 * shared_memory.dsp_return_data[2];
}
R_RETURN(ResultCodeFromLibOpusErrorCode(error_code));
}
Result HardwareOpus::DecodeInterleavedForMultiStream(u32& out_sample_count, void* output_data,
u64 output_data_size, u32 channel_count,
void* input_data, u64 input_data_size,
void* buffer, u64& out_time_taken,
bool reset) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = (u64)input_data;
shared_memory.host_send_data[2] = input_data_size;
shared_memory.host_send_data[3] = (u64)output_data;
shared_memory.host_send_data[4] = output_data_size;
shared_memory.host_send_data[5] = 0;
shared_memory.host_send_data[6] = reset;
opus_decoder.Send(ADSP::Direction::DSP,
ADSP::OpusDecoder::Message::DecodeInterleavedForMultiStream);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::DecodeInterleavedForMultiStreamOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::DecodeInterleavedForMultiStreamOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
auto error_code{static_cast<s32>(shared_memory.dsp_return_data[0])};
if (error_code == OPUS_OK) {
out_sample_count = static_cast<u32>(shared_memory.dsp_return_data[1]);
out_time_taken = 1000 * shared_memory.dsp_return_data[2];
}
R_RETURN(ResultCodeFromLibOpusErrorCode(error_code));
}
Result HardwareOpus::MapMemory(void* buffer, u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::MapMemory);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::MapMemoryOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::MapMemoryOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
R_SUCCEED();
}
Result HardwareOpus::UnmapMemory(void* buffer, u64 buffer_size) {
std::scoped_lock l{mutex};
shared_memory.host_send_data[0] = (u64)buffer;
shared_memory.host_send_data[1] = buffer_size;
opus_decoder.Send(ADSP::Direction::DSP, ADSP::OpusDecoder::Message::UnmapMemory);
auto msg = opus_decoder.Receive(ADSP::Direction::Host);
if (msg != ADSP::OpusDecoder::Message::UnmapMemoryOK) {
LOG_ERROR(Service_Audio, "OpusDecoder returned invalid message. Expected {} got {}",
ADSP::OpusDecoder::Message::UnmapMemoryOK, msg);
R_THROW(ResultInvalidOpusDSPReturnCode);
}
R_SUCCEED();
}
} // namespace AudioCore::OpusDecoder

View File

@@ -1,45 +1,45 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <mutex>
#include <opus.h>
#include "audio_core/adsp/apps/opus/opus_decoder.h"
#include "audio_core/adsp/apps/opus/shared_memory.h"
#include "audio_core/adsp/mailbox.h"
#include "core/hle/service/audio/errors.h"
namespace AudioCore::OpusDecoder {
class HardwareOpus {
public:
HardwareOpus(Core::System& system);
u64 GetWorkBufferSize(u32 channel);
u64 GetWorkBufferSizeForMultiStream(u32 total_stream_count, u32 stereo_stream_count);
Result InitializeDecodeObject(u32 sample_rate, u32 channel_count, void* buffer,
u64 buffer_size);
Result InitializeMultiStreamDecodeObject(u32 sample_rate, u32 channel_count,
u32 totaL_stream_count, u32 stereo_stream_count,
void* mappings, void* buffer, u64 buffer_size);
Result ShutdownDecodeObject(void* buffer, u64 buffer_size);
Result ShutdownMultiStreamDecodeObject(void* buffer, u64 buffer_size);
Result DecodeInterleaved(u32& out_sample_count, void* output_data, u64 output_data_size,
u32 channel_count, void* input_data, u64 input_data_size, void* buffer,
u64& out_time_taken, bool reset);
Result DecodeInterleavedForMultiStream(u32& out_sample_count, void* output_data,
u64 output_data_size, u32 channel_count,
void* input_data, u64 input_data_size, void* buffer,
u64& out_time_taken, bool reset);
Result MapMemory(void* buffer, u64 buffer_size);
Result UnmapMemory(void* buffer, u64 buffer_size);
private:
Core::System& system;
std::mutex mutex;
ADSP::OpusDecoder::OpusDecoder& opus_decoder;
ADSP::OpusDecoder::SharedMemory shared_memory;
};
} // namespace AudioCore::OpusDecoder
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <mutex>
#include <opus.h>
#include "audio_core/adsp/apps/opus/opus_decoder.h"
#include "audio_core/adsp/apps/opus/shared_memory.h"
#include "audio_core/adsp/mailbox.h"
#include "core/hle/service/audio/errors.h"
namespace AudioCore::OpusDecoder {
class HardwareOpus {
public:
HardwareOpus(Core::System& system);
u64 GetWorkBufferSize(u32 channel);
u64 GetWorkBufferSizeForMultiStream(u32 total_stream_count, u32 stereo_stream_count);
Result InitializeDecodeObject(u32 sample_rate, u32 channel_count, void* buffer,
u64 buffer_size);
Result InitializeMultiStreamDecodeObject(u32 sample_rate, u32 channel_count,
u32 totaL_stream_count, u32 stereo_stream_count,
void* mappings, void* buffer, u64 buffer_size);
Result ShutdownDecodeObject(void* buffer, u64 buffer_size);
Result ShutdownMultiStreamDecodeObject(void* buffer, u64 buffer_size);
Result DecodeInterleaved(u32& out_sample_count, void* output_data, u64 output_data_size,
u32 channel_count, void* input_data, u64 input_data_size, void* buffer,
u64& out_time_taken, bool reset);
Result DecodeInterleavedForMultiStream(u32& out_sample_count, void* output_data,
u64 output_data_size, u32 channel_count,
void* input_data, u64 input_data_size, void* buffer,
u64& out_time_taken, bool reset);
Result MapMemory(void* buffer, u64 buffer_size);
Result UnmapMemory(void* buffer, u64 buffer_size);
private:
Core::System& system;
std::mutex mutex;
ADSP::OpusDecoder::OpusDecoder& opus_decoder;
ADSP::OpusDecoder::SharedMemory shared_memory;
};
} // namespace AudioCore::OpusDecoder

View File

@@ -1,6 +1,9 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#ifdef ANDROID
#include <sys/system_properties.h>
#endif
#include "common/arm64/native_clock.h"
namespace Common::Arm64 {
@@ -65,7 +68,23 @@ bool NativeClock::IsNative() const {
u64 NativeClock::GetHostCNTFRQ() {
u64 cntfrq_el0 = 0;
asm("mrs %[cntfrq_el0], cntfrq_el0" : [cntfrq_el0] "=r"(cntfrq_el0));
std::string_view board{""};
#ifdef ANDROID
char buffer[PROP_VALUE_MAX];
int len{__system_property_get("ro.product.board", buffer)};
board = std::string_view(buffer, static_cast<size_t>(len));
#endif
if (board == "s5e9925") { // Exynos 2200
cntfrq_el0 = 25600000;
} else if (board == "exynos2100") { // Exynos 2100
cntfrq_el0 = 26000000;
} else if (board == "exynos9810") { // Exynos 9810
cntfrq_el0 = 26000000;
} else if (board == "s5e8825") { // Exynos 1280
cntfrq_el0 = 26000000;
} else {
asm("mrs %[cntfrq_el0], cntfrq_el0" : [cntfrq_el0] "=r"(cntfrq_el0));
}
return cntfrq_el0;
}

View File

@@ -9,12 +9,12 @@ PageTable::PageTable() = default;
PageTable::~PageTable() noexcept = default;
bool PageTable::BeginTraversal(TraversalEntry& out_entry, TraversalContext& out_context,
u64 address) const {
bool PageTable::BeginTraversal(TraversalEntry* out_entry, TraversalContext* out_context,
Common::ProcessAddress address) const {
// Setup invalid defaults.
out_entry.phys_addr = 0;
out_entry.block_size = page_size;
out_context.next_page = 0;
out_entry->phys_addr = 0;
out_entry->block_size = page_size;
out_context->next_page = 0;
// Validate that we can read the actual entry.
const auto page = address / page_size;
@@ -29,20 +29,20 @@ bool PageTable::BeginTraversal(TraversalEntry& out_entry, TraversalContext& out_
}
// Populate the results.
out_entry.phys_addr = phys_addr + address;
out_context.next_page = page + 1;
out_context.next_offset = address + page_size;
out_entry->phys_addr = phys_addr + GetInteger(address);
out_context->next_page = page + 1;
out_context->next_offset = GetInteger(address) + page_size;
return true;
}
bool PageTable::ContinueTraversal(TraversalEntry& out_entry, TraversalContext& context) const {
bool PageTable::ContinueTraversal(TraversalEntry* out_entry, TraversalContext* context) const {
// Setup invalid defaults.
out_entry.phys_addr = 0;
out_entry.block_size = page_size;
out_entry->phys_addr = 0;
out_entry->block_size = page_size;
// Validate that we can read the actual entry.
const auto page = context.next_page;
const auto page = context->next_page;
if (page >= backing_addr.size()) {
return false;
}
@@ -54,9 +54,9 @@ bool PageTable::ContinueTraversal(TraversalEntry& out_entry, TraversalContext& c
}
// Populate the results.
out_entry.phys_addr = phys_addr + context.next_offset;
context.next_page = page + 1;
context.next_offset += page_size;
out_entry->phys_addr = phys_addr + context->next_offset;
context->next_page = page + 1;
context->next_offset += page_size;
return true;
}

View File

@@ -6,6 +6,7 @@
#include <atomic>
#include "common/common_types.h"
#include "common/typed_address.h"
#include "common/virtual_buffer.h"
namespace Common {
@@ -100,9 +101,9 @@ struct PageTable {
PageTable(PageTable&&) noexcept = default;
PageTable& operator=(PageTable&&) noexcept = default;
bool BeginTraversal(TraversalEntry& out_entry, TraversalContext& out_context,
u64 address) const;
bool ContinueTraversal(TraversalEntry& out_entry, TraversalContext& context) const;
bool BeginTraversal(TraversalEntry* out_entry, TraversalContext* out_context,
Common::ProcessAddress address) const;
bool ContinueTraversal(TraversalEntry* out_entry, TraversalContext* context) const;
/**
* Resizes the page table to be able to accommodate enough pages within
@@ -117,6 +118,16 @@ struct PageTable {
return current_address_space_width_in_bits;
}
bool GetPhysicalAddress(Common::PhysicalAddress* out_phys_addr,
Common::ProcessAddress virt_addr) const {
if (virt_addr > (1ULL << this->GetAddressSpaceBits())) {
return false;
}
*out_phys_addr = backing_addr[virt_addr / page_size] + GetInteger(virt_addr);
return true;
}
/**
* Vector of memory pointers backing each page. An entry can only be non-null if the
* corresponding attribute element is of type `Memory`.

View File

@@ -271,8 +271,9 @@ add_library(core STATIC
hle/kernel/k_page_heap.h
hle/kernel/k_page_group.cpp
hle/kernel/k_page_group.h
hle/kernel/k_page_table.cpp
hle/kernel/k_page_table.h
hle/kernel/k_page_table_base.cpp
hle/kernel/k_page_table_base.h
hle/kernel/k_page_table_manager.h
hle/kernel/k_page_table_slab_heap.h
hle/kernel/k_port.cpp
@@ -280,6 +281,7 @@ add_library(core STATIC
hle/kernel/k_priority_queue.h
hle/kernel/k_process.cpp
hle/kernel/k_process.h
hle/kernel/k_process_page_table.h
hle/kernel/k_readable_event.cpp
hle/kernel/k_readable_event.h
hle/kernel/k_resource_limit.cpp
@@ -330,8 +332,6 @@ add_library(core STATIC
hle/kernel/physical_core.cpp
hle/kernel/physical_core.h
hle/kernel/physical_memory.h
hle/kernel/process_capability.cpp
hle/kernel/process_capability.h
hle/kernel/slab_helpers.h
hle/kernel/svc.cpp
hle/kernel/svc.h

View File

@@ -727,29 +727,34 @@ static constexpr const char* GetMemoryPermissionString(const Kernel::Svc::Memory
}
}
static VAddr GetModuleEnd(Kernel::KPageTable& page_table, VAddr base) {
Kernel::Svc::MemoryInfo mem_info;
static VAddr GetModuleEnd(Kernel::KProcessPageTable& page_table, VAddr base) {
Kernel::KMemoryInfo mem_info;
Kernel::Svc::MemoryInfo svc_mem_info;
Kernel::Svc::PageInfo page_info;
VAddr cur_addr{base};
// Expect: r-x Code (.text)
mem_info = page_table.QueryInfo(cur_addr).GetSvcMemoryInfo();
cur_addr = mem_info.base_address + mem_info.size;
if (mem_info.state != Kernel::Svc::MemoryState::Code ||
mem_info.permission != Kernel::Svc::MemoryPermission::ReadExecute) {
R_ASSERT(page_table.QueryInfo(std::addressof(mem_info), std::addressof(page_info), cur_addr));
svc_mem_info = mem_info.GetSvcMemoryInfo();
cur_addr = svc_mem_info.base_address + svc_mem_info.size;
if (svc_mem_info.state != Kernel::Svc::MemoryState::Code ||
svc_mem_info.permission != Kernel::Svc::MemoryPermission::ReadExecute) {
return cur_addr - 1;
}
// Expect: r-- Code (.rodata)
mem_info = page_table.QueryInfo(cur_addr).GetSvcMemoryInfo();
cur_addr = mem_info.base_address + mem_info.size;
if (mem_info.state != Kernel::Svc::MemoryState::Code ||
mem_info.permission != Kernel::Svc::MemoryPermission::Read) {
R_ASSERT(page_table.QueryInfo(std::addressof(mem_info), std::addressof(page_info), cur_addr));
svc_mem_info = mem_info.GetSvcMemoryInfo();
cur_addr = svc_mem_info.base_address + svc_mem_info.size;
if (svc_mem_info.state != Kernel::Svc::MemoryState::Code ||
svc_mem_info.permission != Kernel::Svc::MemoryPermission::Read) {
return cur_addr - 1;
}
// Expect: rw- CodeData (.data)
mem_info = page_table.QueryInfo(cur_addr).GetSvcMemoryInfo();
cur_addr = mem_info.base_address + mem_info.size;
R_ASSERT(page_table.QueryInfo(std::addressof(mem_info), std::addressof(page_info), cur_addr));
svc_mem_info = mem_info.GetSvcMemoryInfo();
cur_addr = svc_mem_info.base_address + svc_mem_info.size;
return cur_addr - 1;
}
@@ -767,7 +772,7 @@ void GDBStub::HandleRcmd(const std::vector<u8>& command) {
if (command_str == "get fastmem") {
if (Settings::IsFastmemEnabled()) {
const auto& impl = page_table.PageTableImpl();
const auto& impl = page_table.GetImpl();
const auto region = reinterpret_cast<uintptr_t>(impl.fastmem_arena);
const auto region_bits = impl.current_address_space_width_in_bits;
const auto region_size = 1ULL << region_bits;
@@ -785,20 +790,22 @@ void GDBStub::HandleRcmd(const std::vector<u8>& command) {
reply = fmt::format("Process: {:#x} ({})\n"
"Program Id: {:#018x}\n",
process->GetProcessId(), process->GetName(), process->GetProgramId());
reply += fmt::format("Layout:\n"
" Alias: {:#012x} - {:#012x}\n"
" Heap: {:#012x} - {:#012x}\n"
" Aslr: {:#012x} - {:#012x}\n"
" Stack: {:#012x} - {:#012x}\n"
"Modules:\n",
GetInteger(page_table.GetAliasRegionStart()),
GetInteger(page_table.GetAliasRegionEnd()),
GetInteger(page_table.GetHeapRegionStart()),
GetInteger(page_table.GetHeapRegionEnd()),
GetInteger(page_table.GetAliasCodeRegionStart()),
GetInteger(page_table.GetAliasCodeRegionEnd()),
GetInteger(page_table.GetStackRegionStart()),
GetInteger(page_table.GetStackRegionEnd()));
reply += fmt::format(
"Layout:\n"
" Alias: {:#012x} - {:#012x}\n"
" Heap: {:#012x} - {:#012x}\n"
" Aslr: {:#012x} - {:#012x}\n"
" Stack: {:#012x} - {:#012x}\n"
"Modules:\n",
GetInteger(page_table.GetAliasRegionStart()),
GetInteger(page_table.GetAliasRegionStart()) + page_table.GetAliasRegionSize() - 1,
GetInteger(page_table.GetHeapRegionStart()),
GetInteger(page_table.GetHeapRegionStart()) + page_table.GetHeapRegionSize() - 1,
GetInteger(page_table.GetAliasCodeRegionStart()),
GetInteger(page_table.GetAliasCodeRegionStart()) + page_table.GetAliasCodeRegionSize() -
1,
GetInteger(page_table.GetStackRegionStart()),
GetInteger(page_table.GetStackRegionStart()) + page_table.GetStackRegionSize() - 1);
for (const auto& [vaddr, name] : modules) {
reply += fmt::format(" {:#012x} - {:#012x} {}\n", vaddr,
@@ -811,27 +818,34 @@ void GDBStub::HandleRcmd(const std::vector<u8>& command) {
while (true) {
using MemoryAttribute = Kernel::Svc::MemoryAttribute;
auto mem_info = page_table.QueryInfo(cur_addr).GetSvcMemoryInfo();
Kernel::KMemoryInfo mem_info{};
Kernel::Svc::PageInfo page_info{};
R_ASSERT(page_table.QueryInfo(std::addressof(mem_info), std::addressof(page_info),
cur_addr));
auto svc_mem_info = mem_info.GetSvcMemoryInfo();
if (mem_info.state != Kernel::Svc::MemoryState::Inaccessible ||
mem_info.base_address + mem_info.size - 1 != std::numeric_limits<u64>::max()) {
const char* state = GetMemoryStateName(mem_info.state);
const char* perm = GetMemoryPermissionString(mem_info);
if (svc_mem_info.state != Kernel::Svc::MemoryState::Inaccessible ||
svc_mem_info.base_address + svc_mem_info.size - 1 !=
std::numeric_limits<u64>::max()) {
const char* state = GetMemoryStateName(svc_mem_info.state);
const char* perm = GetMemoryPermissionString(svc_mem_info);
const char l = True(mem_info.attribute & MemoryAttribute::Locked) ? 'L' : '-';
const char i = True(mem_info.attribute & MemoryAttribute::IpcLocked) ? 'I' : '-';
const char d = True(mem_info.attribute & MemoryAttribute::DeviceShared) ? 'D' : '-';
const char u = True(mem_info.attribute & MemoryAttribute::Uncached) ? 'U' : '-';
const char l = True(svc_mem_info.attribute & MemoryAttribute::Locked) ? 'L' : '-';
const char i =
True(svc_mem_info.attribute & MemoryAttribute::IpcLocked) ? 'I' : '-';
const char d =
True(svc_mem_info.attribute & MemoryAttribute::DeviceShared) ? 'D' : '-';
const char u = True(svc_mem_info.attribute & MemoryAttribute::Uncached) ? 'U' : '-';
const char p =
True(mem_info.attribute & MemoryAttribute::PermissionLocked) ? 'P' : '-';
True(svc_mem_info.attribute & MemoryAttribute::PermissionLocked) ? 'P' : '-';
reply += fmt::format(" {:#012x} - {:#012x} {} {} {}{}{}{}{} [{}, {}]\n",
mem_info.base_address,
mem_info.base_address + mem_info.size - 1, perm, state, l, i,
d, u, p, mem_info.ipc_count, mem_info.device_count);
reply += fmt::format(
" {:#012x} - {:#012x} {} {} {}{}{}{}{} [{}, {}]\n", svc_mem_info.base_address,
svc_mem_info.base_address + svc_mem_info.size - 1, perm, state, l, i, d, u, p,
svc_mem_info.ipc_count, svc_mem_info.device_count);
}
const uintptr_t next_address = mem_info.base_address + mem_info.size;
const uintptr_t next_address = svc_mem_info.base_address + svc_mem_info.size;
if (next_address <= cur_addr) {
break;
}

View File

@@ -35,13 +35,14 @@ struct RomFSHeader {
static_assert(sizeof(RomFSHeader) == 0x50, "RomFSHeader has incorrect size.");
struct DirectoryEntry {
u32_le parent;
u32_le sibling;
u32_le child_dir;
u32_le child_file;
u32_le hash;
u32_le name_length;
};
static_assert(sizeof(DirectoryEntry) == 0x14, "DirectoryEntry has incorrect size.");
static_assert(sizeof(DirectoryEntry) == 0x18, "DirectoryEntry has incorrect size.");
struct FileEntry {
u32_le parent;
@@ -64,25 +65,22 @@ std::pair<Entry, std::string> GetEntry(const VirtualFile& file, std::size_t offs
return {entry, string};
}
void ProcessFile(VirtualFile file, std::size_t file_offset, std::size_t data_offset,
u32 this_file_offset, std::shared_ptr<VectorVfsDirectory> parent) {
while (true) {
void ProcessFile(const VirtualFile& file, std::size_t file_offset, std::size_t data_offset,
u32 this_file_offset, std::shared_ptr<VectorVfsDirectory>& parent) {
while (this_file_offset != ROMFS_ENTRY_EMPTY) {
auto entry = GetEntry<FileEntry>(file, file_offset + this_file_offset);
parent->AddFile(std::make_shared<OffsetVfsFile>(
file, entry.first.size, entry.first.offset + data_offset, entry.second));
if (entry.first.sibling == ROMFS_ENTRY_EMPTY)
break;
this_file_offset = entry.first.sibling;
}
}
void ProcessDirectory(VirtualFile file, std::size_t dir_offset, std::size_t file_offset,
void ProcessDirectory(const VirtualFile& file, std::size_t dir_offset, std::size_t file_offset,
std::size_t data_offset, u32 this_dir_offset,
std::shared_ptr<VectorVfsDirectory> parent) {
while (true) {
std::shared_ptr<VectorVfsDirectory>& parent) {
while (this_dir_offset != ROMFS_ENTRY_EMPTY) {
auto entry = GetEntry<DirectoryEntry>(file, dir_offset + this_dir_offset);
auto current = std::make_shared<VectorVfsDirectory>(
std::vector<VirtualFile>{}, std::vector<VirtualDir>{}, entry.second);
@@ -97,14 +95,12 @@ void ProcessDirectory(VirtualFile file, std::size_t dir_offset, std::size_t file
}
parent->AddDirectory(current);
if (entry.first.sibling == ROMFS_ENTRY_EMPTY)
break;
this_dir_offset = entry.first.sibling;
}
}
} // Anonymous namespace
VirtualDir ExtractRomFS(VirtualFile file, RomFSExtractionType type) {
VirtualDir ExtractRomFS(VirtualFile file) {
RomFSHeader header{};
if (file->ReadObject(&header) != sizeof(RomFSHeader))
return nullptr;
@@ -113,27 +109,17 @@ VirtualDir ExtractRomFS(VirtualFile file, RomFSExtractionType type) {
return nullptr;
const u64 file_offset = header.file_meta.offset;
const u64 dir_offset = header.directory_meta.offset + 4;
const u64 dir_offset = header.directory_meta.offset;
auto root =
std::make_shared<VectorVfsDirectory>(std::vector<VirtualFile>{}, std::vector<VirtualDir>{},
file->GetName(), file->GetContainingDirectory());
auto root_container = std::make_shared<VectorVfsDirectory>();
ProcessDirectory(file, dir_offset, file_offset, header.data_offset, 0, root);
ProcessDirectory(file, dir_offset, file_offset, header.data_offset, 0, root_container);
VirtualDir out = std::move(root);
if (type == RomFSExtractionType::SingleDiscard)
return out->GetSubdirectories().front();
while (out->GetSubdirectories().size() == 1 && out->GetFiles().empty()) {
if (Common::ToLower(out->GetSubdirectories().front()->GetName()) == "data" &&
type == RomFSExtractionType::Truncated)
break;
out = out->GetSubdirectories().front();
if (auto root = root_container->GetSubdirectory(""); root) {
return std::make_shared<CachedVfsDirectory>(std::move(root));
}
return std::make_shared<CachedVfsDirectory>(std::move(out));
return nullptr;
}
VirtualFile CreateRomFS(VirtualDir dir, VirtualDir ext) {

View File

@@ -7,16 +7,9 @@
namespace FileSys {
enum class RomFSExtractionType {
Full, // Includes data directory
Truncated, // Traverses into data directory
SingleDiscard, // Traverses into the first subdirectory of root
};
// Converts a RomFS binary blob to VFS Filesystem
// Returns nullptr on failure
VirtualDir ExtractRomFS(VirtualFile file,
RomFSExtractionType type = RomFSExtractionType::Truncated);
VirtualDir ExtractRomFS(VirtualFile file);
// Converts a VFS filesystem into a RomFS binary
// Returns nullptr on failure

View File

@@ -96,18 +96,7 @@ void EmulatedController::ReloadFromSettings() {
}
controller.color_values = {};
controller.colors_state.fullkey = {
.body = GetNpadColor(player.body_color_left),
.button = GetNpadColor(player.button_color_left),
};
controller.colors_state.left = {
.body = GetNpadColor(player.body_color_left),
.button = GetNpadColor(player.button_color_left),
};
controller.colors_state.right = {
.body = GetNpadColor(player.body_color_right),
.button = GetNpadColor(player.button_color_right),
};
ReloadColorsFromSettings();
ring_params[0] = Common::ParamPackage(Settings::values.ringcon_analogs);
@@ -128,6 +117,30 @@ void EmulatedController::ReloadFromSettings() {
ReloadInput();
}
void EmulatedController::ReloadColorsFromSettings() {
const auto player_index = NpadIdTypeToIndex(npad_id_type);
const auto& player = Settings::values.players.GetValue()[player_index];
// Avoid updating colors if overridden by physical controller
if (controller.color_values[LeftIndex].body != 0 &&
controller.color_values[RightIndex].body != 0) {
return;
}
controller.colors_state.fullkey = {
.body = GetNpadColor(player.body_color_left),
.button = GetNpadColor(player.button_color_left),
};
controller.colors_state.left = {
.body = GetNpadColor(player.body_color_left),
.button = GetNpadColor(player.button_color_left),
};
controller.colors_state.right = {
.body = GetNpadColor(player.body_color_right),
.button = GetNpadColor(player.button_color_right),
};
}
void EmulatedController::LoadDevices() {
// TODO(german77): Use more buttons to detect the correct device
const auto left_joycon = button_params[Settings::NativeButton::DRight];
@@ -1091,30 +1104,30 @@ void EmulatedController::SetBattery(const Common::Input::CallbackStatus& callbac
bool is_charging = false;
bool is_powered = false;
NpadBatteryLevel battery_level = 0;
NpadBatteryLevel battery_level = NpadBatteryLevel::Empty;
switch (controller.battery_values[index]) {
case Common::Input::BatteryLevel::Charging:
is_charging = true;
is_powered = true;
battery_level = 6;
battery_level = NpadBatteryLevel::Full;
break;
case Common::Input::BatteryLevel::Medium:
battery_level = 6;
battery_level = NpadBatteryLevel::High;
break;
case Common::Input::BatteryLevel::Low:
battery_level = 4;
battery_level = NpadBatteryLevel::Low;
break;
case Common::Input::BatteryLevel::Critical:
battery_level = 2;
battery_level = NpadBatteryLevel::Critical;
break;
case Common::Input::BatteryLevel::Empty:
battery_level = 0;
battery_level = NpadBatteryLevel::Empty;
break;
case Common::Input::BatteryLevel::None:
case Common::Input::BatteryLevel::Full:
default:
is_powered = true;
battery_level = 8;
battery_level = NpadBatteryLevel::Full;
break;
}

View File

@@ -253,6 +253,9 @@ public:
/// Overrides current mapped devices with the stored configuration and reloads all input devices
void ReloadFromSettings();
/// Updates current colors with the ones stored in the configuration
void ReloadColorsFromSettings();
/// Saves the current mapped configuration
void SaveCurrentConfig();

View File

@@ -302,6 +302,15 @@ enum class TouchScreenModeForNx : u8 {
Heat2,
};
// This is nn::hid::system::NpadBatteryLevel
enum class NpadBatteryLevel : u32 {
Empty,
Critical,
Low,
High,
Full,
};
// This is nn::hid::NpadStyleTag
struct NpadStyleTag {
union {
@@ -385,16 +394,12 @@ struct NpadGcTriggerState {
};
static_assert(sizeof(NpadGcTriggerState) == 0x10, "NpadGcTriggerState is an invalid size");
// This is nn::hid::system::NpadBatteryLevel
using NpadBatteryLevel = u32;
static_assert(sizeof(NpadBatteryLevel) == 0x4, "NpadBatteryLevel is an invalid size");
// This is nn::hid::system::NpadPowerInfo
struct NpadPowerInfo {
bool is_powered{};
bool is_charging{};
INSERT_PADDING_BYTES(0x6);
NpadBatteryLevel battery_level{8};
NpadBatteryLevel battery_level{NpadBatteryLevel::Full};
};
static_assert(sizeof(NpadPowerInfo) == 0xC, "NpadPowerInfo is an invalid size");

View File

@@ -222,7 +222,7 @@ Result KSystemControl::AllocateSecureMemory(KernelCore& kernel, KVirtualAddress*
};
// We succeeded.
*out = KPageTable::GetHeapVirtualAddress(kernel.MemoryLayout(), paddr);
*out = KPageTable::GetHeapVirtualAddress(kernel, paddr);
R_SUCCEED();
}
@@ -238,8 +238,17 @@ void KSystemControl::FreeSecureMemory(KernelCore& kernel, KVirtualAddress addres
ASSERT(Common::IsAligned(size, alignment));
// Close the secure region's pages.
kernel.MemoryManager().Close(KPageTable::GetHeapPhysicalAddress(kernel.MemoryLayout(), address),
kernel.MemoryManager().Close(KPageTable::GetHeapPhysicalAddress(kernel, address),
size / PageSize);
}
// Insecure Memory.
KResourceLimit* KSystemControl::GetInsecureMemoryResourceLimit(KernelCore& kernel) {
return kernel.GetSystemResourceLimit();
}
u32 KSystemControl::GetInsecureMemoryPool() {
return static_cast<u32>(KMemoryManager::Pool::SystemNonSecure);
}
} // namespace Kernel::Board::Nintendo::Nx

View File

@@ -8,7 +8,8 @@
namespace Kernel {
class KernelCore;
}
class KResourceLimit;
} // namespace Kernel
namespace Kernel::Board::Nintendo::Nx {
@@ -40,6 +41,10 @@ public:
u32 pool);
static void FreeSecureMemory(KernelCore& kernel, KVirtualAddress address, size_t size,
u32 pool);
// Insecure Memory.
static KResourceLimit* GetInsecureMemoryResourceLimit(KernelCore& kernel);
static u32 GetInsecureMemoryPool();
};
} // namespace Kernel::Board::Nintendo::Nx

View File

@@ -4,14 +4,15 @@
#include "core/hardware_properties.h"
#include "core/hle/kernel/k_capabilities.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process_page_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/svc_version.h"
namespace Kernel {
Result KCapabilities::InitializeForKip(std::span<const u32> kern_caps, KPageTable* page_table) {
Result KCapabilities::InitializeForKip(std::span<const u32> kern_caps,
KProcessPageTable* page_table) {
// We're initializing an initial process.
m_svc_access_flags.reset();
m_irq_access_flags.reset();
@@ -41,7 +42,8 @@ Result KCapabilities::InitializeForKip(std::span<const u32> kern_caps, KPageTabl
R_RETURN(this->SetCapabilities(kern_caps, page_table));
}
Result KCapabilities::InitializeForUser(std::span<const u32> user_caps, KPageTable* page_table) {
Result KCapabilities::InitializeForUser(std::span<const u32> user_caps,
KProcessPageTable* page_table) {
// We're initializing a user process.
m_svc_access_flags.reset();
m_irq_access_flags.reset();
@@ -121,7 +123,7 @@ Result KCapabilities::SetSyscallMaskCapability(const u32 cap, u32& set_svc) {
R_SUCCEED();
}
Result KCapabilities::MapRange_(const u32 cap, const u32 size_cap, KPageTable* page_table) {
Result KCapabilities::MapRange_(const u32 cap, const u32 size_cap, KProcessPageTable* page_table) {
const auto range_pack = MapRange{cap};
const auto size_pack = MapRangeSize{size_cap};
@@ -142,16 +144,13 @@ Result KCapabilities::MapRange_(const u32 cap, const u32 size_cap, KPageTable* p
? KMemoryPermission::UserRead
: KMemoryPermission::UserReadWrite;
if (MapRangeSize{size_cap}.normal) {
// R_RETURN(page_table->MapStatic(phys_addr, size, perm));
R_RETURN(page_table->MapStatic(phys_addr, size, perm));
} else {
// R_RETURN(page_table->MapIo(phys_addr, size, perm));
R_RETURN(page_table->MapIo(phys_addr, size, perm));
}
UNIMPLEMENTED();
R_SUCCEED();
}
Result KCapabilities::MapIoPage_(const u32 cap, KPageTable* page_table) {
Result KCapabilities::MapIoPage_(const u32 cap, KProcessPageTable* page_table) {
// Get/validate address/size
const u64 phys_addr = MapIoPage{cap}.address.Value() * PageSize;
const size_t num_pages = 1;
@@ -160,10 +159,7 @@ Result KCapabilities::MapIoPage_(const u32 cap, KPageTable* page_table) {
R_UNLESS(((phys_addr + size - 1) & ~PhysicalMapAllowedMask) == 0, ResultInvalidAddress);
// Do the mapping.
// R_RETURN(page_table->MapIo(phys_addr, size, KMemoryPermission_UserReadWrite));
UNIMPLEMENTED();
R_SUCCEED();
R_RETURN(page_table->MapIo(phys_addr, size, KMemoryPermission::UserReadWrite));
}
template <typename F>
@@ -200,13 +196,11 @@ Result KCapabilities::ProcessMapRegionCapability(const u32 cap, F f) {
R_SUCCEED();
}
Result KCapabilities::MapRegion_(const u32 cap, KPageTable* page_table) {
Result KCapabilities::MapRegion_(const u32 cap, KProcessPageTable* page_table) {
// Map each region into the process's page table.
return ProcessMapRegionCapability(
cap, [](KMemoryRegionType region_type, KMemoryPermission perm) -> Result {
// R_RETURN(page_table->MapRegion(region_type, perm));
UNIMPLEMENTED();
R_SUCCEED();
cap, [page_table](KMemoryRegionType region_type, KMemoryPermission perm) -> Result {
R_RETURN(page_table->MapRegion(region_type, perm));
});
}
@@ -280,7 +274,7 @@ Result KCapabilities::SetDebugFlagsCapability(const u32 cap) {
}
Result KCapabilities::SetCapability(const u32 cap, u32& set_flags, u32& set_svc,
KPageTable* page_table) {
KProcessPageTable* page_table) {
// Validate this is a capability we can act on.
const auto type = GetCapabilityType(cap);
R_UNLESS(type != CapabilityType::Invalid, ResultInvalidArgument);
@@ -318,7 +312,7 @@ Result KCapabilities::SetCapability(const u32 cap, u32& set_flags, u32& set_svc,
}
}
Result KCapabilities::SetCapabilities(std::span<const u32> caps, KPageTable* page_table) {
Result KCapabilities::SetCapabilities(std::span<const u32> caps, KProcessPageTable* page_table) {
u32 set_flags = 0, set_svc = 0;
for (size_t i = 0; i < caps.size(); i++) {

View File

@@ -15,15 +15,15 @@
namespace Kernel {
class KPageTable;
class KProcessPageTable;
class KernelCore;
class KCapabilities {
public:
constexpr explicit KCapabilities() = default;
Result InitializeForKip(std::span<const u32> kern_caps, KPageTable* page_table);
Result InitializeForUser(std::span<const u32> user_caps, KPageTable* page_table);
Result InitializeForKip(std::span<const u32> kern_caps, KProcessPageTable* page_table);
Result InitializeForUser(std::span<const u32> user_caps, KProcessPageTable* page_table);
static Result CheckCapabilities(KernelCore& kernel, std::span<const u32> user_caps);
@@ -264,9 +264,9 @@ private:
Result SetCorePriorityCapability(const u32 cap);
Result SetSyscallMaskCapability(const u32 cap, u32& set_svc);
Result MapRange_(const u32 cap, const u32 size_cap, KPageTable* page_table);
Result MapIoPage_(const u32 cap, KPageTable* page_table);
Result MapRegion_(const u32 cap, KPageTable* page_table);
Result MapRange_(const u32 cap, const u32 size_cap, KProcessPageTable* page_table);
Result MapIoPage_(const u32 cap, KProcessPageTable* page_table);
Result MapRegion_(const u32 cap, KProcessPageTable* page_table);
Result SetInterruptPairCapability(const u32 cap);
Result SetProgramTypeCapability(const u32 cap);
Result SetKernelVersionCapability(const u32 cap);
@@ -277,8 +277,9 @@ private:
static Result ProcessMapRegionCapability(const u32 cap, F f);
static Result CheckMapRegion(KernelCore& kernel, const u32 cap);
Result SetCapability(const u32 cap, u32& set_flags, u32& set_svc, KPageTable* page_table);
Result SetCapabilities(std::span<const u32> caps, KPageTable* page_table);
Result SetCapability(const u32 cap, u32& set_flags, u32& set_svc,
KProcessPageTable* page_table);
Result SetCapabilities(std::span<const u32> caps, KProcessPageTable* page_table);
private:
Svc::SvcAccessFlagSet m_svc_access_flags{};

View File

@@ -54,7 +54,7 @@ Result KDeviceAddressSpace::Detach(Svc::DeviceName device_name) {
R_SUCCEED();
}
Result KDeviceAddressSpace::Map(KPageTable* page_table, KProcessAddress process_address,
Result KDeviceAddressSpace::Map(KProcessPageTable* page_table, KProcessAddress process_address,
size_t size, u64 device_address, u32 option, bool is_aligned) {
// Check that the address falls within the space.
R_UNLESS((m_space_address <= device_address &&
@@ -113,7 +113,7 @@ Result KDeviceAddressSpace::Map(KPageTable* page_table, KProcessAddress process_
R_SUCCEED();
}
Result KDeviceAddressSpace::Unmap(KPageTable* page_table, KProcessAddress process_address,
Result KDeviceAddressSpace::Unmap(KProcessPageTable* page_table, KProcessAddress process_address,
size_t size, u64 device_address) {
// Check that the address falls within the space.
R_UNLESS((m_space_address <= device_address &&

View File

@@ -5,7 +5,7 @@
#include <string>
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process_page_table.h"
#include "core/hle/kernel/k_typed_address.h"
#include "core/hle/kernel/slab_helpers.h"
#include "core/hle/result.h"
@@ -31,23 +31,23 @@ public:
Result Attach(Svc::DeviceName device_name);
Result Detach(Svc::DeviceName device_name);
Result MapByForce(KPageTable* page_table, KProcessAddress process_address, size_t size,
Result MapByForce(KProcessPageTable* page_table, KProcessAddress process_address, size_t size,
u64 device_address, u32 option) {
R_RETURN(this->Map(page_table, process_address, size, device_address, option, false));
}
Result MapAligned(KPageTable* page_table, KProcessAddress process_address, size_t size,
Result MapAligned(KProcessPageTable* page_table, KProcessAddress process_address, size_t size,
u64 device_address, u32 option) {
R_RETURN(this->Map(page_table, process_address, size, device_address, option, true));
}
Result Unmap(KPageTable* page_table, KProcessAddress process_address, size_t size,
Result Unmap(KProcessPageTable* page_table, KProcessAddress process_address, size_t size,
u64 device_address);
static void Initialize();
private:
Result Map(KPageTable* page_table, KProcessAddress process_address, size_t size,
Result Map(KProcessPageTable* page_table, KProcessAddress process_address, size_t size,
u64 device_address, u32 option, bool is_aligned);
private:

View File

@@ -394,6 +394,14 @@ private:
return region.GetEndAddress();
}
public:
static const KMemoryRegion* Find(const KMemoryLayout& layout, KVirtualAddress address) {
return Find(address, layout.GetVirtualMemoryRegionTree());
}
static const KMemoryRegion* Find(const KMemoryLayout& layout, KPhysicalAddress address) {
return Find(address, layout.GetPhysicalMemoryRegionTree());
}
private:
u64 m_linear_phys_to_virt_diff{};
u64 m_linear_virt_to_phys_diff{};

View File

@@ -456,8 +456,7 @@ size_t KMemoryManager::Impl::Initialize(KPhysicalAddress address, size_t size,
}
void KMemoryManager::Impl::InitializeOptimizedMemory(KernelCore& kernel) {
auto optimize_pa =
KPageTable::GetHeapPhysicalAddress(kernel.MemoryLayout(), m_management_region);
auto optimize_pa = KPageTable::GetHeapPhysicalAddress(kernel, m_management_region);
auto* optimize_map = kernel.System().DeviceMemory().GetPointer<u64>(optimize_pa);
std::memset(optimize_map, 0, CalculateOptimizedProcessOverheadSize(m_heap.GetSize()));
@@ -465,8 +464,7 @@ void KMemoryManager::Impl::InitializeOptimizedMemory(KernelCore& kernel) {
void KMemoryManager::Impl::TrackUnoptimizedAllocation(KernelCore& kernel, KPhysicalAddress block,
size_t num_pages) {
auto optimize_pa =
KPageTable::GetHeapPhysicalAddress(kernel.MemoryLayout(), m_management_region);
auto optimize_pa = KPageTable::GetHeapPhysicalAddress(kernel, m_management_region);
auto* optimize_map = kernel.System().DeviceMemory().GetPointer<u64>(optimize_pa);
// Get the range we're tracking.
@@ -485,8 +483,7 @@ void KMemoryManager::Impl::TrackUnoptimizedAllocation(KernelCore& kernel, KPhysi
void KMemoryManager::Impl::TrackOptimizedAllocation(KernelCore& kernel, KPhysicalAddress block,
size_t num_pages) {
auto optimize_pa =
KPageTable::GetHeapPhysicalAddress(kernel.MemoryLayout(), m_management_region);
auto optimize_pa = KPageTable::GetHeapPhysicalAddress(kernel, m_management_region);
auto* optimize_map = kernel.System().DeviceMemory().GetPointer<u64>(optimize_pa);
// Get the range we're tracking.
@@ -506,8 +503,7 @@ void KMemoryManager::Impl::TrackOptimizedAllocation(KernelCore& kernel, KPhysica
bool KMemoryManager::Impl::ProcessOptimizedAllocation(KernelCore& kernel, KPhysicalAddress block,
size_t num_pages, u8 fill_pattern) {
auto& device_memory = kernel.System().DeviceMemory();
auto optimize_pa =
KPageTable::GetHeapPhysicalAddress(kernel.MemoryLayout(), m_management_region);
auto optimize_pa = KPageTable::GetHeapPhysicalAddress(kernel, m_management_region);
auto* optimize_map = device_memory.GetPointer<u64>(optimize_pa);
// We want to return whether any pages were newly allocated.

File diff suppressed because it is too large Load Diff

View File

@@ -3,548 +3,14 @@
#pragma once
#include <memory>
#include "common/common_funcs.h"
#include "common/page_table.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/k_dynamic_resource_manager.h"
#include "core/hle/kernel/k_light_lock.h"
#include "core/hle/kernel/k_memory_block.h"
#include "core/hle/kernel/k_memory_block_manager.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_memory_manager.h"
#include "core/hle/kernel/k_typed_address.h"
#include "core/hle/result.h"
#include "core/memory.h"
namespace Core {
class System;
}
#include "core/hle/kernel/k_page_table_base.h"
namespace Kernel {
enum class DisableMergeAttribute : u8 {
None = (0U << 0),
DisableHead = (1U << 0),
DisableHeadAndBody = (1U << 1),
EnableHeadAndBody = (1U << 2),
DisableTail = (1U << 3),
EnableTail = (1U << 4),
EnableAndMergeHeadBodyTail = (1U << 5),
EnableHeadBodyTail = EnableHeadAndBody | EnableTail,
DisableHeadBodyTail = DisableHeadAndBody | DisableTail,
};
struct KPageProperties {
KMemoryPermission perm;
bool io;
bool uncached;
DisableMergeAttribute disable_merge_attributes;
};
static_assert(std::is_trivial_v<KPageProperties>);
static_assert(sizeof(KPageProperties) == sizeof(u32));
class KBlockInfoManager;
class KMemoryBlockManager;
class KResourceLimit;
class KSystemResource;
class KPageTable final {
protected:
struct PageLinkedList;
class KPageTable final : public KPageTableBase {
public:
enum class ICacheInvalidationStrategy : u32 { InvalidateRange, InvalidateAll };
YUZU_NON_COPYABLE(KPageTable);
YUZU_NON_MOVEABLE(KPageTable);
explicit KPageTable(Core::System& system_);
~KPageTable();
Result InitializeForProcess(Svc::CreateProcessFlag as_type, bool enable_aslr,
bool enable_das_merge, bool from_back, KMemoryManager::Pool pool,
KProcessAddress code_addr, size_t code_size,
KSystemResource* system_resource, KResourceLimit* resource_limit,
Core::Memory::Memory& memory);
void Finalize();
Result MapProcessCode(KProcessAddress addr, size_t pages_count, KMemoryState state,
KMemoryPermission perm);
Result MapCodeMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size);
Result UnmapCodeMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size,
ICacheInvalidationStrategy icache_invalidation_strategy);
Result UnmapProcessMemory(KProcessAddress dst_addr, size_t size, KPageTable& src_page_table,
KProcessAddress src_addr);
Result MapPhysicalMemory(KProcessAddress addr, size_t size);
Result UnmapPhysicalMemory(KProcessAddress addr, size_t size);
Result MapMemory(KProcessAddress dst_addr, KProcessAddress src_addr, size_t size);
Result UnmapMemory(KProcessAddress dst_addr, KProcessAddress src_addr, size_t size);
Result SetProcessMemoryPermission(KProcessAddress addr, size_t size,
Svc::MemoryPermission svc_perm);
KMemoryInfo QueryInfo(KProcessAddress addr);
Result SetMemoryPermission(KProcessAddress addr, size_t size, Svc::MemoryPermission perm);
Result SetMemoryAttribute(KProcessAddress addr, size_t size, u32 mask, u32 attr);
Result SetMaxHeapSize(size_t size);
Result SetHeapSize(u64* out, size_t size);
Result LockForMapDeviceAddressSpace(bool* out_is_io, KProcessAddress address, size_t size,
KMemoryPermission perm, bool is_aligned, bool check_heap);
Result LockForUnmapDeviceAddressSpace(KProcessAddress address, size_t size, bool check_heap);
Result UnlockForDeviceAddressSpace(KProcessAddress addr, size_t size);
Result LockForIpcUserBuffer(KPhysicalAddress* out, KProcessAddress address, size_t size);
Result UnlockForIpcUserBuffer(KProcessAddress address, size_t size);
Result SetupForIpc(KProcessAddress* out_dst_addr, size_t size, KProcessAddress src_addr,
KPageTable& src_page_table, KMemoryPermission test_perm,
KMemoryState dst_state, bool send);
Result CleanupForIpcServer(KProcessAddress address, size_t size, KMemoryState dst_state);
Result CleanupForIpcClient(KProcessAddress address, size_t size, KMemoryState dst_state);
Result LockForTransferMemory(KPageGroup* out, KProcessAddress address, size_t size,
KMemoryPermission perm);
Result UnlockForTransferMemory(KProcessAddress address, size_t size, const KPageGroup& pg);
Result LockForCodeMemory(KPageGroup* out, KProcessAddress addr, size_t size);
Result UnlockForCodeMemory(KProcessAddress addr, size_t size, const KPageGroup& pg);
Result MakeAndOpenPageGroup(KPageGroup* out, KProcessAddress address, size_t num_pages,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr);
Common::PageTable& PageTableImpl() {
return *m_page_table_impl;
}
const Common::PageTable& PageTableImpl() const {
return *m_page_table_impl;
}
KBlockInfoManager* GetBlockInfoManager() {
return m_block_info_manager;
}
Result MapPages(KProcessAddress* out_addr, size_t num_pages, size_t alignment,
KPhysicalAddress phys_addr, KProcessAddress region_start,
size_t region_num_pages, KMemoryState state, KMemoryPermission perm) {
R_RETURN(this->MapPages(out_addr, num_pages, alignment, phys_addr, true, region_start,
region_num_pages, state, perm));
}
Result MapPages(KProcessAddress* out_addr, size_t num_pages, size_t alignment,
KPhysicalAddress phys_addr, KMemoryState state, KMemoryPermission perm) {
R_RETURN(this->MapPages(out_addr, num_pages, alignment, phys_addr, true,
this->GetRegionAddress(state),
this->GetRegionSize(state) / PageSize, state, perm));
}
Result MapPages(KProcessAddress* out_addr, size_t num_pages, KMemoryState state,
KMemoryPermission perm) {
R_RETURN(this->MapPages(out_addr, num_pages, PageSize, 0, false,
this->GetRegionAddress(state),
this->GetRegionSize(state) / PageSize, state, perm));
}
Result MapPages(KProcessAddress address, size_t num_pages, KMemoryState state,
KMemoryPermission perm);
Result UnmapPages(KProcessAddress address, size_t num_pages, KMemoryState state);
Result MapPageGroup(KProcessAddress* out_addr, const KPageGroup& pg,
KProcessAddress region_start, size_t region_num_pages, KMemoryState state,
KMemoryPermission perm);
Result MapPageGroup(KProcessAddress address, const KPageGroup& pg, KMemoryState state,
KMemoryPermission perm);
Result UnmapPageGroup(KProcessAddress address, const KPageGroup& pg, KMemoryState state);
void RemapPageGroup(PageLinkedList* page_list, KProcessAddress address, size_t size,
const KPageGroup& pg);
KProcessAddress GetRegionAddress(Svc::MemoryState state) const;
size_t GetRegionSize(Svc::MemoryState state) const;
bool CanContain(KProcessAddress addr, size_t size, Svc::MemoryState state) const;
KProcessAddress GetRegionAddress(KMemoryState state) const {
return this->GetRegionAddress(static_cast<Svc::MemoryState>(state & KMemoryState::Mask));
}
size_t GetRegionSize(KMemoryState state) const {
return this->GetRegionSize(static_cast<Svc::MemoryState>(state & KMemoryState::Mask));
}
bool CanContain(KProcessAddress addr, size_t size, KMemoryState state) const {
return this->CanContain(addr, size,
static_cast<Svc::MemoryState>(state & KMemoryState::Mask));
}
protected:
struct PageLinkedList {
private:
struct Node {
Node* m_next;
std::array<u8, PageSize - sizeof(Node*)> m_buffer;
};
public:
constexpr PageLinkedList() = default;
void Push(Node* n) {
ASSERT(Common::IsAligned(reinterpret_cast<uintptr_t>(n), PageSize));
n->m_next = m_root;
m_root = n;
}
void Push(Core::Memory::Memory& memory, KVirtualAddress addr) {
this->Push(memory.GetPointer<Node>(GetInteger(addr)));
}
Node* Peek() const {
return m_root;
}
Node* Pop() {
Node* const r = m_root;
m_root = r->m_next;
r->m_next = nullptr;
return r;
}
private:
Node* m_root{};
};
static_assert(std::is_trivially_destructible<PageLinkedList>::value);
private:
enum class OperationType : u32 {
Map = 0,
MapGroup = 1,
MapFirstGroup = 2,
Unmap = 3,
ChangePermissions = 4,
ChangePermissionsAndRefresh = 5,
ChangePermissionsAndRefreshAndFlush = 6,
Separate = 7,
};
static constexpr KMemoryAttribute DefaultMemoryIgnoreAttr =
KMemoryAttribute::IpcLocked | KMemoryAttribute::DeviceShared;
Result MapPages(KProcessAddress* out_addr, size_t num_pages, size_t alignment,
KPhysicalAddress phys_addr, bool is_pa_valid, KProcessAddress region_start,
size_t region_num_pages, KMemoryState state, KMemoryPermission perm);
bool IsRegionContiguous(KProcessAddress addr, u64 size) const;
void AddRegionToPages(KProcessAddress start, size_t num_pages, KPageGroup& page_linked_list);
KMemoryInfo QueryInfoImpl(KProcessAddress addr);
KProcessAddress AllocateVirtualMemory(KProcessAddress start, size_t region_num_pages,
u64 needed_num_pages, size_t align);
Result Operate(KProcessAddress addr, size_t num_pages, const KPageGroup& page_group,
OperationType operation);
Result Operate(KProcessAddress addr, size_t num_pages, KMemoryPermission perm,
OperationType operation, KPhysicalAddress map_addr = 0);
void FinalizeUpdate(PageLinkedList* page_list);
KProcessAddress FindFreeArea(KProcessAddress region_start, size_t region_num_pages,
size_t num_pages, size_t alignment, size_t offset,
size_t guard_pages);
Result CheckMemoryStateContiguous(size_t* out_blocks_needed, KProcessAddress addr, size_t size,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr) const;
Result CheckMemoryStateContiguous(KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr) const {
R_RETURN(this->CheckMemoryStateContiguous(nullptr, addr, size, state_mask, state, perm_mask,
perm, attr_mask, attr));
}
Result CheckMemoryState(const KMemoryInfo& info, KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr) const;
Result CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm,
KMemoryAttribute* out_attr, size_t* out_blocks_needed,
KMemoryBlockManager::const_iterator it, KProcessAddress last_addr,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const;
Result CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm,
KMemoryAttribute* out_attr, size_t* out_blocks_needed,
KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const;
Result CheckMemoryState(size_t* out_blocks_needed, KProcessAddress addr, size_t size,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const {
R_RETURN(CheckMemoryState(nullptr, nullptr, nullptr, out_blocks_needed, addr, size,
state_mask, state, perm_mask, perm, attr_mask, attr,
ignore_attr));
}
Result CheckMemoryState(KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const {
R_RETURN(this->CheckMemoryState(nullptr, addr, size, state_mask, state, perm_mask, perm,
attr_mask, attr, ignore_attr));
}
Result LockMemoryAndOpen(KPageGroup* out_pg, KPhysicalAddress* out_KPhysicalAddress,
KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr, KMemoryPermission new_perm,
KMemoryAttribute lock_attr);
Result UnlockMemory(KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryPermission new_perm, KMemoryAttribute lock_attr,
const KPageGroup* pg);
Result MakePageGroup(KPageGroup& pg, KProcessAddress addr, size_t num_pages);
bool IsValidPageGroup(const KPageGroup& pg, KProcessAddress addr, size_t num_pages);
bool IsLockedByCurrentThread() const {
return m_general_lock.IsLockedByCurrentThread();
}
bool IsHeapPhysicalAddress(const KMemoryLayout& layout, KPhysicalAddress phys_addr) {
ASSERT(this->IsLockedByCurrentThread());
return layout.IsHeapPhysicalAddress(m_cached_physical_heap_region, phys_addr);
}
bool GetPhysicalAddressLocked(KPhysicalAddress* out, KProcessAddress virt_addr) const {
ASSERT(this->IsLockedByCurrentThread());
*out = GetPhysicalAddr(virt_addr);
return *out != 0;
}
Result SetupForIpcClient(PageLinkedList* page_list, size_t* out_blocks_needed,
KProcessAddress address, size_t size, KMemoryPermission test_perm,
KMemoryState dst_state);
Result SetupForIpcServer(KProcessAddress* out_addr, size_t size, KProcessAddress src_addr,
KMemoryPermission test_perm, KMemoryState dst_state,
KPageTable& src_page_table, bool send);
void CleanupForIpcClientOnServerSetupFailure(PageLinkedList* page_list, KProcessAddress address,
size_t size, KMemoryPermission prot_perm);
Result AllocateAndMapPagesImpl(PageLinkedList* page_list, KProcessAddress address,
size_t num_pages, KMemoryPermission perm);
Result MapPageGroupImpl(PageLinkedList* page_list, KProcessAddress address,
const KPageGroup& pg, const KPageProperties properties, bool reuse_ll);
mutable KLightLock m_general_lock;
mutable KLightLock m_map_physical_memory_lock;
public:
constexpr KProcessAddress GetAddressSpaceStart() const {
return m_address_space_start;
}
constexpr KProcessAddress GetAddressSpaceEnd() const {
return m_address_space_end;
}
constexpr size_t GetAddressSpaceSize() const {
return m_address_space_end - m_address_space_start;
}
constexpr KProcessAddress GetHeapRegionStart() const {
return m_heap_region_start;
}
constexpr KProcessAddress GetHeapRegionEnd() const {
return m_heap_region_end;
}
constexpr size_t GetHeapRegionSize() const {
return m_heap_region_end - m_heap_region_start;
}
constexpr KProcessAddress GetAliasRegionStart() const {
return m_alias_region_start;
}
constexpr KProcessAddress GetAliasRegionEnd() const {
return m_alias_region_end;
}
constexpr size_t GetAliasRegionSize() const {
return m_alias_region_end - m_alias_region_start;
}
constexpr KProcessAddress GetStackRegionStart() const {
return m_stack_region_start;
}
constexpr KProcessAddress GetStackRegionEnd() const {
return m_stack_region_end;
}
constexpr size_t GetStackRegionSize() const {
return m_stack_region_end - m_stack_region_start;
}
constexpr KProcessAddress GetKernelMapRegionStart() const {
return m_kernel_map_region_start;
}
constexpr KProcessAddress GetKernelMapRegionEnd() const {
return m_kernel_map_region_end;
}
constexpr KProcessAddress GetCodeRegionStart() const {
return m_code_region_start;
}
constexpr KProcessAddress GetCodeRegionEnd() const {
return m_code_region_end;
}
constexpr KProcessAddress GetAliasCodeRegionStart() const {
return m_alias_code_region_start;
}
constexpr KProcessAddress GetAliasCodeRegionEnd() const {
return m_alias_code_region_end;
}
constexpr size_t GetAliasCodeRegionSize() const {
return m_alias_code_region_end - m_alias_code_region_start;
}
size_t GetNormalMemorySize() const {
KScopedLightLock lk(m_general_lock);
return GetHeapSize() + m_mapped_physical_memory_size;
}
constexpr size_t GetAddressSpaceWidth() const {
return m_address_space_width;
}
constexpr size_t GetHeapSize() const {
return m_current_heap_end - m_heap_region_start;
}
constexpr size_t GetNumGuardPages() const {
return IsKernel() ? 1 : 4;
}
KPhysicalAddress GetPhysicalAddr(KProcessAddress addr) const {
const auto backing_addr = m_page_table_impl->backing_addr[addr >> PageBits];
ASSERT(backing_addr);
return backing_addr + GetInteger(addr);
}
constexpr bool Contains(KProcessAddress addr) const {
return m_address_space_start <= addr && addr <= m_address_space_end - 1;
}
constexpr bool Contains(KProcessAddress addr, size_t size) const {
return m_address_space_start <= addr && addr < addr + size &&
addr + size - 1 <= m_address_space_end - 1;
}
constexpr bool IsInAliasRegion(KProcessAddress addr, size_t size) const {
return this->Contains(addr, size) && m_alias_region_start <= addr &&
addr + size - 1 <= m_alias_region_end - 1;
}
constexpr bool IsInHeapRegion(KProcessAddress addr, size_t size) const {
return this->Contains(addr, size) && m_heap_region_start <= addr &&
addr + size - 1 <= m_heap_region_end - 1;
}
public:
static KVirtualAddress GetLinearMappedVirtualAddress(const KMemoryLayout& layout,
KPhysicalAddress addr) {
return layout.GetLinearVirtualAddress(addr);
}
static KPhysicalAddress GetLinearMappedPhysicalAddress(const KMemoryLayout& layout,
KVirtualAddress addr) {
return layout.GetLinearPhysicalAddress(addr);
}
static KVirtualAddress GetHeapVirtualAddress(const KMemoryLayout& layout,
KPhysicalAddress addr) {
return GetLinearMappedVirtualAddress(layout, addr);
}
static KPhysicalAddress GetHeapPhysicalAddress(const KMemoryLayout& layout,
KVirtualAddress addr) {
return GetLinearMappedPhysicalAddress(layout, addr);
}
static KVirtualAddress GetPageTableVirtualAddress(const KMemoryLayout& layout,
KPhysicalAddress addr) {
return GetLinearMappedVirtualAddress(layout, addr);
}
static KPhysicalAddress GetPageTablePhysicalAddress(const KMemoryLayout& layout,
KVirtualAddress addr) {
return GetLinearMappedPhysicalAddress(layout, addr);
}
private:
constexpr bool IsKernel() const {
return m_is_kernel;
}
constexpr bool IsAslrEnabled() const {
return m_enable_aslr;
}
constexpr bool ContainsPages(KProcessAddress addr, size_t num_pages) const {
return (m_address_space_start <= addr) &&
(num_pages <= (m_address_space_end - m_address_space_start) / PageSize) &&
(addr + num_pages * PageSize - 1 <= m_address_space_end - 1);
}
private:
class KScopedPageTableUpdater {
private:
KPageTable* m_pt{};
PageLinkedList m_ll;
public:
explicit KScopedPageTableUpdater(KPageTable* pt) : m_pt(pt) {}
explicit KScopedPageTableUpdater(KPageTable& pt) : KScopedPageTableUpdater(&pt) {}
~KScopedPageTableUpdater() {
m_pt->FinalizeUpdate(this->GetPageList());
}
PageLinkedList* GetPageList() {
return std::addressof(m_ll);
}
};
private:
KProcessAddress m_address_space_start{};
KProcessAddress m_address_space_end{};
KProcessAddress m_heap_region_start{};
KProcessAddress m_heap_region_end{};
KProcessAddress m_current_heap_end{};
KProcessAddress m_alias_region_start{};
KProcessAddress m_alias_region_end{};
KProcessAddress m_stack_region_start{};
KProcessAddress m_stack_region_end{};
KProcessAddress m_kernel_map_region_start{};
KProcessAddress m_kernel_map_region_end{};
KProcessAddress m_code_region_start{};
KProcessAddress m_code_region_end{};
KProcessAddress m_alias_code_region_start{};
KProcessAddress m_alias_code_region_end{};
size_t m_max_heap_size{};
size_t m_mapped_physical_memory_size{};
size_t m_mapped_unsafe_physical_memory{};
size_t m_mapped_insecure_memory{};
size_t m_mapped_ipc_server_memory{};
size_t m_address_space_width{};
KMemoryBlockManager m_memory_block_manager;
u32 m_allocate_option{};
bool m_is_kernel{};
bool m_enable_aslr{};
bool m_enable_device_address_space_merge{};
KMemoryBlockSlabManager* m_memory_block_slab_manager{};
KBlockInfoManager* m_block_info_manager{};
KResourceLimit* m_resource_limit{};
u32 m_heap_fill_value{};
u32 m_ipc_fill_value{};
u32 m_stack_fill_value{};
const KMemoryRegion* m_cached_physical_heap_region{};
KMemoryManager::Pool m_memory_pool{KMemoryManager::Pool::Application};
KMemoryManager::Direction m_allocation_option{KMemoryManager::Direction::FromFront};
std::unique_ptr<Common::PageTable> m_page_table_impl;
Core::System& m_system;
KernelCore& m_kernel;
Core::Memory::Memory* m_memory{};
explicit KPageTable(KernelCore& kernel) : KPageTableBase(kernel) {}
~KPageTable() = default;
};
} // namespace Kernel

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,759 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <memory>
#include "common/common_funcs.h"
#include "common/page_table.h"
#include "core/core.h"
#include "core/hle/kernel/k_dynamic_resource_manager.h"
#include "core/hle/kernel/k_light_lock.h"
#include "core/hle/kernel/k_memory_block.h"
#include "core/hle/kernel/k_memory_block_manager.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_memory_manager.h"
#include "core/hle/kernel/k_typed_address.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/result.h"
#include "core/memory.h"
namespace Kernel {
enum class DisableMergeAttribute : u8 {
None = (0U << 0),
DisableHead = (1U << 0),
DisableHeadAndBody = (1U << 1),
EnableHeadAndBody = (1U << 2),
DisableTail = (1U << 3),
EnableTail = (1U << 4),
EnableAndMergeHeadBodyTail = (1U << 5),
EnableHeadBodyTail = EnableHeadAndBody | EnableTail,
DisableHeadBodyTail = DisableHeadAndBody | DisableTail,
};
DECLARE_ENUM_FLAG_OPERATORS(DisableMergeAttribute);
struct KPageProperties {
KMemoryPermission perm;
bool io;
bool uncached;
DisableMergeAttribute disable_merge_attributes;
};
static_assert(std::is_trivial_v<KPageProperties>);
static_assert(sizeof(KPageProperties) == sizeof(u32));
class KResourceLimit;
class KSystemResource;
class KPageTableBase {
YUZU_NON_COPYABLE(KPageTableBase);
YUZU_NON_MOVEABLE(KPageTableBase);
public:
using TraversalEntry = Common::PageTable::TraversalEntry;
using TraversalContext = Common::PageTable::TraversalContext;
class MemoryRange {
private:
KernelCore& m_kernel;
KPhysicalAddress m_address;
size_t m_size;
bool m_heap;
public:
explicit MemoryRange(KernelCore& kernel)
: m_kernel(kernel), m_address(0), m_size(0), m_heap(false) {}
void Set(KPhysicalAddress address, size_t size, bool heap) {
m_address = address;
m_size = size;
m_heap = heap;
}
KPhysicalAddress GetAddress() const {
return m_address;
}
size_t GetSize() const {
return m_size;
}
bool IsHeap() const {
return m_heap;
}
void Open();
void Close();
};
protected:
enum MemoryFillValue : u8 {
MemoryFillValue_Zero = 0,
MemoryFillValue_Stack = 'X',
MemoryFillValue_Ipc = 'Y',
MemoryFillValue_Heap = 'Z',
};
enum class OperationType {
Map = 0,
MapGroup = 1,
MapFirstGroup = 2,
Unmap = 3,
ChangePermissions = 4,
ChangePermissionsAndRefresh = 5,
ChangePermissionsAndRefreshAndFlush = 6,
Separate = 7,
};
static constexpr size_t MaxPhysicalMapAlignment = 1_GiB;
static constexpr size_t RegionAlignment = 2_MiB;
static_assert(RegionAlignment == KernelAslrAlignment);
struct PageLinkedList {
private:
struct Node {
Node* m_next;
std::array<u8, PageSize - sizeof(Node*)> m_buffer;
};
static_assert(std::is_trivial_v<Node>);
private:
Node* m_root{};
public:
constexpr PageLinkedList() : m_root(nullptr) {}
void Push(Node* n) {
ASSERT(Common::IsAligned(reinterpret_cast<uintptr_t>(n), PageSize));
n->m_next = m_root;
m_root = n;
}
Node* Peek() const {
return m_root;
}
Node* Pop() {
Node* const r = m_root;
m_root = r->m_next;
r->m_next = nullptr;
return r;
}
};
static_assert(std::is_trivially_destructible_v<PageLinkedList>);
static constexpr auto DefaultMemoryIgnoreAttr =
KMemoryAttribute::IpcLocked | KMemoryAttribute::DeviceShared;
static constexpr size_t GetAddressSpaceWidth(Svc::CreateProcessFlag as_type) {
switch (static_cast<Svc::CreateProcessFlag>(as_type &
Svc::CreateProcessFlag::AddressSpaceMask)) {
case Svc::CreateProcessFlag::AddressSpace64Bit:
return 39;
case Svc::CreateProcessFlag::AddressSpace64BitDeprecated:
return 36;
case Svc::CreateProcessFlag::AddressSpace32Bit:
case Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias:
return 32;
default:
UNREACHABLE();
}
}
private:
class KScopedPageTableUpdater {
private:
KPageTableBase* m_pt;
PageLinkedList m_ll;
public:
explicit KScopedPageTableUpdater(KPageTableBase* pt) : m_pt(pt), m_ll() {}
explicit KScopedPageTableUpdater(KPageTableBase& pt)
: KScopedPageTableUpdater(std::addressof(pt)) {}
~KScopedPageTableUpdater() {
m_pt->FinalizeUpdate(this->GetPageList());
}
PageLinkedList* GetPageList() {
return std::addressof(m_ll);
}
};
private:
KernelCore& m_kernel;
Core::System& m_system;
KProcessAddress m_address_space_start{};
KProcessAddress m_address_space_end{};
KProcessAddress m_heap_region_start{};
KProcessAddress m_heap_region_end{};
KProcessAddress m_current_heap_end{};
KProcessAddress m_alias_region_start{};
KProcessAddress m_alias_region_end{};
KProcessAddress m_stack_region_start{};
KProcessAddress m_stack_region_end{};
KProcessAddress m_kernel_map_region_start{};
KProcessAddress m_kernel_map_region_end{};
KProcessAddress m_alias_code_region_start{};
KProcessAddress m_alias_code_region_end{};
KProcessAddress m_code_region_start{};
KProcessAddress m_code_region_end{};
size_t m_max_heap_size{};
size_t m_mapped_physical_memory_size{};
size_t m_mapped_unsafe_physical_memory{};
size_t m_mapped_insecure_memory{};
size_t m_mapped_ipc_server_memory{};
mutable KLightLock m_general_lock;
mutable KLightLock m_map_physical_memory_lock;
KLightLock m_device_map_lock;
std::unique_ptr<Common::PageTable> m_impl{};
Core::Memory::Memory* m_memory{};
KMemoryBlockManager m_memory_block_manager{};
u32 m_allocate_option{};
u32 m_address_space_width{};
bool m_is_kernel{};
bool m_enable_aslr{};
bool m_enable_device_address_space_merge{};
KMemoryBlockSlabManager* m_memory_block_slab_manager{};
KBlockInfoManager* m_block_info_manager{};
KResourceLimit* m_resource_limit{};
const KMemoryRegion* m_cached_physical_linear_region{};
const KMemoryRegion* m_cached_physical_heap_region{};
MemoryFillValue m_heap_fill_value{};
MemoryFillValue m_ipc_fill_value{};
MemoryFillValue m_stack_fill_value{};
public:
explicit KPageTableBase(KernelCore& kernel);
~KPageTableBase();
Result InitializeForKernel(bool is_64_bit, KVirtualAddress start, KVirtualAddress end,
Core::Memory::Memory& memory);
Result InitializeForProcess(Svc::CreateProcessFlag as_type, bool enable_aslr,
bool enable_device_address_space_merge, bool from_back,
KMemoryManager::Pool pool, KProcessAddress code_address,
size_t code_size, KSystemResource* system_resource,
KResourceLimit* resource_limit, Core::Memory::Memory& memory);
void Finalize();
bool IsKernel() const {
return m_is_kernel;
}
bool IsAslrEnabled() const {
return m_enable_aslr;
}
bool Contains(KProcessAddress addr) const {
return m_address_space_start <= addr && addr <= m_address_space_end - 1;
}
bool Contains(KProcessAddress addr, size_t size) const {
return m_address_space_start <= addr && addr < addr + size &&
addr + size - 1 <= m_address_space_end - 1;
}
bool IsInAliasRegion(KProcessAddress addr, size_t size) const {
return this->Contains(addr, size) && m_alias_region_start <= addr &&
addr + size - 1 <= m_alias_region_end - 1;
}
bool IsInHeapRegion(KProcessAddress addr, size_t size) const {
return this->Contains(addr, size) && m_heap_region_start <= addr &&
addr + size - 1 <= m_heap_region_end - 1;
}
bool IsInUnsafeAliasRegion(KProcessAddress addr, size_t size) const {
// Even though Unsafe physical memory is KMemoryState_Normal, it must be mapped inside the
// alias code region.
return this->CanContain(addr, size, Svc::MemoryState::AliasCode);
}
KScopedLightLock AcquireDeviceMapLock() {
return KScopedLightLock(m_device_map_lock);
}
KProcessAddress GetRegionAddress(Svc::MemoryState state) const;
size_t GetRegionSize(Svc::MemoryState state) const;
bool CanContain(KProcessAddress addr, size_t size, Svc::MemoryState state) const;
KProcessAddress GetRegionAddress(KMemoryState state) const {
return this->GetRegionAddress(static_cast<Svc::MemoryState>(state & KMemoryState::Mask));
}
size_t GetRegionSize(KMemoryState state) const {
return this->GetRegionSize(static_cast<Svc::MemoryState>(state & KMemoryState::Mask));
}
bool CanContain(KProcessAddress addr, size_t size, KMemoryState state) const {
return this->CanContain(addr, size,
static_cast<Svc::MemoryState>(state & KMemoryState::Mask));
}
public:
Core::Memory::Memory& GetMemory() {
return *m_memory;
}
Core::Memory::Memory& GetMemory() const {
return *m_memory;
}
Common::PageTable& GetImpl() {
return *m_impl;
}
Common::PageTable& GetImpl() const {
return *m_impl;
}
size_t GetNumGuardPages() const {
return this->IsKernel() ? 1 : 4;
}
protected:
// NOTE: These three functions (Operate, Operate, FinalizeUpdate) are virtual functions
// in Nintendo's kernel. We devirtualize them, since KPageTable is the only derived
// class, and this avoids unnecessary virtual function calls.
Result Operate(PageLinkedList* page_list, KProcessAddress virt_addr, size_t num_pages,
KPhysicalAddress phys_addr, bool is_pa_valid, const KPageProperties properties,
OperationType operation, bool reuse_ll);
Result Operate(PageLinkedList* page_list, KProcessAddress virt_addr, size_t num_pages,
const KPageGroup& page_group, const KPageProperties properties,
OperationType operation, bool reuse_ll);
void FinalizeUpdate(PageLinkedList* page_list);
bool IsLockedByCurrentThread() const {
return m_general_lock.IsLockedByCurrentThread();
}
bool IsLinearMappedPhysicalAddress(KPhysicalAddress phys_addr) {
ASSERT(this->IsLockedByCurrentThread());
return m_kernel.MemoryLayout().IsLinearMappedPhysicalAddress(
m_cached_physical_linear_region, phys_addr);
}
bool IsLinearMappedPhysicalAddress(KPhysicalAddress phys_addr, size_t size) {
ASSERT(this->IsLockedByCurrentThread());
return m_kernel.MemoryLayout().IsLinearMappedPhysicalAddress(
m_cached_physical_linear_region, phys_addr, size);
}
bool IsHeapPhysicalAddress(KPhysicalAddress phys_addr) {
ASSERT(this->IsLockedByCurrentThread());
return m_kernel.MemoryLayout().IsHeapPhysicalAddress(m_cached_physical_heap_region,
phys_addr);
}
bool IsHeapPhysicalAddress(KPhysicalAddress phys_addr, size_t size) {
ASSERT(this->IsLockedByCurrentThread());
return m_kernel.MemoryLayout().IsHeapPhysicalAddress(m_cached_physical_heap_region,
phys_addr, size);
}
bool IsHeapPhysicalAddressForFinalize(KPhysicalAddress phys_addr) {
ASSERT(!this->IsLockedByCurrentThread());
return m_kernel.MemoryLayout().IsHeapPhysicalAddress(m_cached_physical_heap_region,
phys_addr);
}
bool ContainsPages(KProcessAddress addr, size_t num_pages) const {
return (m_address_space_start <= addr) &&
(num_pages <= (m_address_space_end - m_address_space_start) / PageSize) &&
(addr + num_pages * PageSize - 1 <= m_address_space_end - 1);
}
private:
KProcessAddress FindFreeArea(KProcessAddress region_start, size_t region_num_pages,
size_t num_pages, size_t alignment, size_t offset,
size_t guard_pages) const;
Result CheckMemoryStateContiguous(size_t* out_blocks_needed, KProcessAddress addr, size_t size,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr) const;
Result CheckMemoryStateContiguous(KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask,
KMemoryPermission perm, KMemoryAttribute attr_mask,
KMemoryAttribute attr) const {
R_RETURN(this->CheckMemoryStateContiguous(nullptr, addr, size, state_mask, state, perm_mask,
perm, attr_mask, attr));
}
Result CheckMemoryState(const KMemoryInfo& info, KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr) const;
Result CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm,
KMemoryAttribute* out_attr, size_t* out_blocks_needed,
KMemoryBlockManager::const_iterator it, KProcessAddress last_addr,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const;
Result CheckMemoryState(KMemoryState* out_state, KMemoryPermission* out_perm,
KMemoryAttribute* out_attr, size_t* out_blocks_needed,
KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const;
Result CheckMemoryState(size_t* out_blocks_needed, KProcessAddress addr, size_t size,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const {
R_RETURN(this->CheckMemoryState(nullptr, nullptr, nullptr, out_blocks_needed, addr, size,
state_mask, state, perm_mask, perm, attr_mask, attr,
ignore_attr));
}
Result CheckMemoryState(KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryAttribute ignore_attr = DefaultMemoryIgnoreAttr) const {
R_RETURN(this->CheckMemoryState(nullptr, addr, size, state_mask, state, perm_mask, perm,
attr_mask, attr, ignore_attr));
}
Result LockMemoryAndOpen(KPageGroup* out_pg, KPhysicalAddress* out_paddr, KProcessAddress addr,
size_t size, KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryPermission new_perm, KMemoryAttribute lock_attr);
Result UnlockMemory(KProcessAddress addr, size_t size, KMemoryState state_mask,
KMemoryState state, KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr,
KMemoryPermission new_perm, KMemoryAttribute lock_attr,
const KPageGroup* pg);
Result QueryInfoImpl(KMemoryInfo* out_info, Svc::PageInfo* out_page,
KProcessAddress address) const;
Result QueryMappingImpl(KProcessAddress* out, KPhysicalAddress address, size_t size,
Svc::MemoryState state) const;
Result AllocateAndMapPagesImpl(PageLinkedList* page_list, KProcessAddress address,
size_t num_pages, KMemoryPermission perm);
Result MapPageGroupImpl(PageLinkedList* page_list, KProcessAddress address,
const KPageGroup& pg, const KPageProperties properties, bool reuse_ll);
void RemapPageGroup(PageLinkedList* page_list, KProcessAddress address, size_t size,
const KPageGroup& pg);
Result MakePageGroup(KPageGroup& pg, KProcessAddress addr, size_t num_pages);
bool IsValidPageGroup(const KPageGroup& pg, KProcessAddress addr, size_t num_pages);
Result GetContiguousMemoryRangeWithState(MemoryRange* out, KProcessAddress address, size_t size,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr);
Result MapPages(KProcessAddress* out_addr, size_t num_pages, size_t alignment,
KPhysicalAddress phys_addr, bool is_pa_valid, KProcessAddress region_start,
size_t region_num_pages, KMemoryState state, KMemoryPermission perm);
Result MapIoImpl(KProcessAddress* out, PageLinkedList* page_list, KPhysicalAddress phys_addr,
size_t size, KMemoryState state, KMemoryPermission perm);
Result ReadIoMemoryImpl(KProcessAddress dst_addr, KPhysicalAddress phys_addr, size_t size,
KMemoryState state);
Result WriteIoMemoryImpl(KPhysicalAddress phys_addr, KProcessAddress src_addr, size_t size,
KMemoryState state);
Result SetupForIpcClient(PageLinkedList* page_list, size_t* out_blocks_needed,
KProcessAddress address, size_t size, KMemoryPermission test_perm,
KMemoryState dst_state);
Result SetupForIpcServer(KProcessAddress* out_addr, size_t size, KProcessAddress src_addr,
KMemoryPermission test_perm, KMemoryState dst_state,
KPageTableBase& src_page_table, bool send);
void CleanupForIpcClientOnServerSetupFailure(PageLinkedList* page_list, KProcessAddress address,
size_t size, KMemoryPermission prot_perm);
size_t GetSize(KMemoryState state) const;
bool GetPhysicalAddressLocked(KPhysicalAddress* out, KProcessAddress virt_addr) const {
// Validate pre-conditions.
ASSERT(this->IsLockedByCurrentThread());
return this->GetImpl().GetPhysicalAddress(out, virt_addr);
}
public:
bool GetPhysicalAddress(KPhysicalAddress* out, KProcessAddress virt_addr) const {
// Validate pre-conditions.
ASSERT(!this->IsLockedByCurrentThread());
// Acquire exclusive access to the table while doing address translation.
KScopedLightLock lk(m_general_lock);
return this->GetPhysicalAddressLocked(out, virt_addr);
}
KBlockInfoManager* GetBlockInfoManager() const {
return m_block_info_manager;
}
Result SetMemoryPermission(KProcessAddress addr, size_t size, Svc::MemoryPermission perm);
Result SetProcessMemoryPermission(KProcessAddress addr, size_t size,
Svc::MemoryPermission perm);
Result SetMemoryAttribute(KProcessAddress addr, size_t size, KMemoryAttribute mask,
KMemoryAttribute attr);
Result SetHeapSize(KProcessAddress* out, size_t size);
Result SetMaxHeapSize(size_t size);
Result QueryInfo(KMemoryInfo* out_info, Svc::PageInfo* out_page_info,
KProcessAddress addr) const;
Result QueryPhysicalAddress(Svc::lp64::PhysicalMemoryInfo* out, KProcessAddress address) const;
Result QueryStaticMapping(KProcessAddress* out, KPhysicalAddress address, size_t size) const {
R_RETURN(this->QueryMappingImpl(out, address, size, Svc::MemoryState::Static));
}
Result QueryIoMapping(KProcessAddress* out, KPhysicalAddress address, size_t size) const {
R_RETURN(this->QueryMappingImpl(out, address, size, Svc::MemoryState::Io));
}
Result MapMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size);
Result UnmapMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size);
Result MapCodeMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size);
Result UnmapCodeMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size);
Result MapIo(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm);
Result MapIoRegion(KProcessAddress dst_address, KPhysicalAddress phys_addr, size_t size,
Svc::MemoryMapping mapping, Svc::MemoryPermission perm);
Result UnmapIoRegion(KProcessAddress dst_address, KPhysicalAddress phys_addr, size_t size,
Svc::MemoryMapping mapping);
Result MapStatic(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm);
Result MapRegion(KMemoryRegionType region_type, KMemoryPermission perm);
Result MapInsecureMemory(KProcessAddress address, size_t size);
Result UnmapInsecureMemory(KProcessAddress address, size_t size);
Result MapPages(KProcessAddress* out_addr, size_t num_pages, size_t alignment,
KPhysicalAddress phys_addr, KProcessAddress region_start,
size_t region_num_pages, KMemoryState state, KMemoryPermission perm) {
R_RETURN(this->MapPages(out_addr, num_pages, alignment, phys_addr, true, region_start,
region_num_pages, state, perm));
}
Result MapPages(KProcessAddress* out_addr, size_t num_pages, size_t alignment,
KPhysicalAddress phys_addr, KMemoryState state, KMemoryPermission perm) {
R_RETURN(this->MapPages(out_addr, num_pages, alignment, phys_addr, true,
this->GetRegionAddress(state),
this->GetRegionSize(state) / PageSize, state, perm));
}
Result MapPages(KProcessAddress* out_addr, size_t num_pages, KMemoryState state,
KMemoryPermission perm) {
R_RETURN(this->MapPages(out_addr, num_pages, PageSize, 0, false,
this->GetRegionAddress(state),
this->GetRegionSize(state) / PageSize, state, perm));
}
Result MapPages(KProcessAddress address, size_t num_pages, KMemoryState state,
KMemoryPermission perm);
Result UnmapPages(KProcessAddress address, size_t num_pages, KMemoryState state);
Result MapPageGroup(KProcessAddress* out_addr, const KPageGroup& pg,
KProcessAddress region_start, size_t region_num_pages, KMemoryState state,
KMemoryPermission perm);
Result MapPageGroup(KProcessAddress address, const KPageGroup& pg, KMemoryState state,
KMemoryPermission perm);
Result UnmapPageGroup(KProcessAddress address, const KPageGroup& pg, KMemoryState state);
Result MakeAndOpenPageGroup(KPageGroup* out, KProcessAddress address, size_t num_pages,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr);
Result InvalidateProcessDataCache(KProcessAddress address, size_t size);
Result InvalidateCurrentProcessDataCache(KProcessAddress address, size_t size);
Result ReadDebugMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size);
Result ReadDebugIoMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size,
KMemoryState state);
Result WriteDebugMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size);
Result WriteDebugIoMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size,
KMemoryState state);
Result LockForMapDeviceAddressSpace(bool* out_is_io, KProcessAddress address, size_t size,
KMemoryPermission perm, bool is_aligned, bool check_heap);
Result LockForUnmapDeviceAddressSpace(KProcessAddress address, size_t size, bool check_heap);
Result UnlockForDeviceAddressSpace(KProcessAddress address, size_t size);
Result UnlockForDeviceAddressSpacePartialMap(KProcessAddress address, size_t size);
Result OpenMemoryRangeForMapDeviceAddressSpace(KPageTableBase::MemoryRange* out,
KProcessAddress address, size_t size,
KMemoryPermission perm, bool is_aligned);
Result OpenMemoryRangeForUnmapDeviceAddressSpace(MemoryRange* out, KProcessAddress address,
size_t size);
Result LockForIpcUserBuffer(KPhysicalAddress* out, KProcessAddress address, size_t size);
Result UnlockForIpcUserBuffer(KProcessAddress address, size_t size);
Result LockForTransferMemory(KPageGroup* out, KProcessAddress address, size_t size,
KMemoryPermission perm);
Result UnlockForTransferMemory(KProcessAddress address, size_t size, const KPageGroup& pg);
Result LockForCodeMemory(KPageGroup* out, KProcessAddress address, size_t size);
Result UnlockForCodeMemory(KProcessAddress address, size_t size, const KPageGroup& pg);
Result OpenMemoryRangeForProcessCacheOperation(MemoryRange* out, KProcessAddress address,
size_t size);
Result CopyMemoryFromLinearToUser(KProcessAddress dst_addr, size_t size,
KProcessAddress src_addr, KMemoryState src_state_mask,
KMemoryState src_state, KMemoryPermission src_test_perm,
KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr);
Result CopyMemoryFromLinearToKernel(void* buffer, size_t size, KProcessAddress src_addr,
KMemoryState src_state_mask, KMemoryState src_state,
KMemoryPermission src_test_perm,
KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr);
Result CopyMemoryFromUserToLinear(KProcessAddress dst_addr, size_t size,
KMemoryState dst_state_mask, KMemoryState dst_state,
KMemoryPermission dst_test_perm,
KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr,
KProcessAddress src_addr);
Result CopyMemoryFromKernelToLinear(KProcessAddress dst_addr, size_t size,
KMemoryState dst_state_mask, KMemoryState dst_state,
KMemoryPermission dst_test_perm,
KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr,
void* buffer);
Result CopyMemoryFromHeapToHeap(KPageTableBase& dst_page_table, KProcessAddress dst_addr,
size_t size, KMemoryState dst_state_mask,
KMemoryState dst_state, KMemoryPermission dst_test_perm,
KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr,
KProcessAddress src_addr, KMemoryState src_state_mask,
KMemoryState src_state, KMemoryPermission src_test_perm,
KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr);
Result CopyMemoryFromHeapToHeapWithoutCheckDestination(
KPageTableBase& dst_page_table, KProcessAddress dst_addr, size_t size,
KMemoryState dst_state_mask, KMemoryState dst_state, KMemoryPermission dst_test_perm,
KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr, KProcessAddress src_addr,
KMemoryState src_state_mask, KMemoryState src_state, KMemoryPermission src_test_perm,
KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr);
Result SetupForIpc(KProcessAddress* out_dst_addr, size_t size, KProcessAddress src_addr,
KPageTableBase& src_page_table, KMemoryPermission test_perm,
KMemoryState dst_state, bool send);
Result CleanupForIpcServer(KProcessAddress address, size_t size, KMemoryState dst_state);
Result CleanupForIpcClient(KProcessAddress address, size_t size, KMemoryState dst_state);
Result MapPhysicalMemory(KProcessAddress address, size_t size);
Result UnmapPhysicalMemory(KProcessAddress address, size_t size);
Result MapPhysicalMemoryUnsafe(KProcessAddress address, size_t size);
Result UnmapPhysicalMemoryUnsafe(KProcessAddress address, size_t size);
Result UnmapProcessMemory(KProcessAddress dst_address, size_t size, KPageTableBase& src_pt,
KProcessAddress src_address);
public:
KProcessAddress GetAddressSpaceStart() const {
return m_address_space_start;
}
KProcessAddress GetHeapRegionStart() const {
return m_heap_region_start;
}
KProcessAddress GetAliasRegionStart() const {
return m_alias_region_start;
}
KProcessAddress GetStackRegionStart() const {
return m_stack_region_start;
}
KProcessAddress GetKernelMapRegionStart() const {
return m_kernel_map_region_start;
}
KProcessAddress GetCodeRegionStart() const {
return m_code_region_start;
}
KProcessAddress GetAliasCodeRegionStart() const {
return m_alias_code_region_start;
}
size_t GetAddressSpaceSize() const {
return m_address_space_end - m_address_space_start;
}
size_t GetHeapRegionSize() const {
return m_heap_region_end - m_heap_region_start;
}
size_t GetAliasRegionSize() const {
return m_alias_region_end - m_alias_region_start;
}
size_t GetStackRegionSize() const {
return m_stack_region_end - m_stack_region_start;
}
size_t GetKernelMapRegionSize() const {
return m_kernel_map_region_end - m_kernel_map_region_start;
}
size_t GetCodeRegionSize() const {
return m_code_region_end - m_code_region_start;
}
size_t GetAliasCodeRegionSize() const {
return m_alias_code_region_end - m_alias_code_region_start;
}
size_t GetNormalMemorySize() const {
// Lock the table.
KScopedLightLock lk(m_general_lock);
return (m_current_heap_end - m_heap_region_start) + m_mapped_physical_memory_size;
}
size_t GetCodeSize() const;
size_t GetCodeDataSize() const;
size_t GetAliasCodeSize() const;
size_t GetAliasCodeDataSize() const;
u32 GetAllocateOption() const {
return m_allocate_option;
}
u32 GetAddressSpaceWidth() const {
return m_address_space_width;
}
public:
// Linear mapped
static u8* GetLinearMappedVirtualPointer(KernelCore& kernel, KPhysicalAddress addr) {
return kernel.System().DeviceMemory().GetPointer<u8>(addr);
}
static KPhysicalAddress GetLinearMappedPhysicalAddress(KernelCore& kernel,
KVirtualAddress addr) {
return kernel.MemoryLayout().GetLinearPhysicalAddress(addr);
}
static KVirtualAddress GetLinearMappedVirtualAddress(KernelCore& kernel,
KPhysicalAddress addr) {
return kernel.MemoryLayout().GetLinearVirtualAddress(addr);
}
// Heap
static u8* GetHeapVirtualPointer(KernelCore& kernel, KPhysicalAddress addr) {
return kernel.System().DeviceMemory().GetPointer<u8>(addr);
}
static KPhysicalAddress GetHeapPhysicalAddress(KernelCore& kernel, KVirtualAddress addr) {
return GetLinearMappedPhysicalAddress(kernel, addr);
}
static KVirtualAddress GetHeapVirtualAddress(KernelCore& kernel, KPhysicalAddress addr) {
return GetLinearMappedVirtualAddress(kernel, addr);
}
// Member heap
u8* GetHeapVirtualPointer(KPhysicalAddress addr) {
return GetHeapVirtualPointer(m_kernel, addr);
}
KPhysicalAddress GetHeapPhysicalAddress(KVirtualAddress addr) {
return GetHeapPhysicalAddress(m_kernel, addr);
}
KVirtualAddress GetHeapVirtualAddress(KPhysicalAddress addr) {
return GetHeapVirtualAddress(m_kernel, addr);
}
// TODO: GetPageTableVirtualAddress
// TODO: GetPageTablePhysicalAddress
};
} // namespace Kernel

View File

@@ -298,9 +298,9 @@ Result KProcess::Initialize(const Svc::CreateProcessParameter& params, const KPa
const bool enable_aslr = True(params.flags & Svc::CreateProcessFlag::EnableAslr);
const bool enable_das_merge =
False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
R_TRY(m_page_table.InitializeForProcess(
as_type, enable_aslr, enable_das_merge, !enable_aslr, pool, params.code_address,
params.code_num_pages * PageSize, m_system_resource, res_limit, this->GetMemory()));
R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
params.code_address, params.code_num_pages * PageSize,
m_system_resource, res_limit, this->GetMemory()));
}
ON_RESULT_FAILURE_2 {
m_page_table.Finalize();
@@ -391,9 +391,9 @@ Result KProcess::Initialize(const Svc::CreateProcessParameter& params,
const bool enable_aslr = True(params.flags & Svc::CreateProcessFlag::EnableAslr);
const bool enable_das_merge =
False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
R_TRY(m_page_table.InitializeForProcess(as_type, enable_aslr, enable_das_merge,
!enable_aslr, pool, params.code_address, code_size,
m_system_resource, res_limit, this->GetMemory()));
R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
params.code_address, code_size, m_system_resource, res_limit,
this->GetMemory()));
}
ON_RESULT_FAILURE_2 {
m_page_table.Finalize();
@@ -1122,9 +1122,9 @@ Result KProcess::GetThreadList(s32* out_num_threads, KProcessAddress out_thread_
void KProcess::Switch(KProcess* cur_process, KProcess* next_process) {}
KProcess::KProcess(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer(kernel), m_page_table{kernel.System()},
m_state_lock{kernel}, m_list_lock{kernel}, m_cond_var{kernel.System()},
m_address_arbiter{kernel.System()}, m_handle_table{kernel} {}
: KAutoObjectWithSlabHeapAndContainer(kernel), m_page_table{kernel}, m_state_lock{kernel},
m_list_lock{kernel}, m_cond_var{kernel.System()}, m_address_arbiter{kernel.System()},
m_handle_table{kernel} {}
KProcess::~KProcess() = default;
Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size,

View File

@@ -5,13 +5,14 @@
#include <map>
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/code_set.h"
#include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_capabilities.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_page_table_manager.h"
#include "core/hle/kernel/k_process_page_table.h"
#include "core/hle/kernel/k_system_resource.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_local_page.h"
@@ -65,7 +66,7 @@ private:
using TLPIterator = TLPTree::iterator;
private:
KPageTable m_page_table;
KProcessPageTable m_page_table;
std::atomic<size_t> m_used_kernel_memory_size{};
TLPTree m_fully_used_tlp_tree{};
TLPTree m_partially_used_tlp_tree{};
@@ -254,9 +255,8 @@ public:
return m_is_hbl;
}
Kernel::KMemoryManager::Direction GetAllocateOption() const {
// TODO: property of the KPageTableBase
return KMemoryManager::Direction::FromFront;
u32 GetAllocateOption() const {
return m_page_table.GetAllocateOption();
}
ThreadList& GetThreadList() {
@@ -295,10 +295,10 @@ public:
return m_list_lock;
}
KPageTable& GetPageTable() {
KProcessPageTable& GetPageTable() {
return m_page_table;
}
const KPageTable& GetPageTable() const {
const KProcessPageTable& GetPageTable() const {
return m_page_table;
}

View File

@@ -0,0 +1,480 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_scoped_lock.h"
#include "core/hle/kernel/svc_types.h"
namespace Core {
class ARM_Interface;
}
namespace Kernel {
class KProcessPageTable {
private:
KPageTable m_page_table;
public:
KProcessPageTable(KernelCore& kernel) : m_page_table(kernel) {}
Result Initialize(Svc::CreateProcessFlag as_type, bool enable_aslr, bool enable_das_merge,
bool from_back, KMemoryManager::Pool pool, KProcessAddress code_address,
size_t code_size, KSystemResource* system_resource,
KResourceLimit* resource_limit, Core::Memory::Memory& memory) {
R_RETURN(m_page_table.InitializeForProcess(as_type, enable_aslr, enable_das_merge,
from_back, pool, code_address, code_size,
system_resource, resource_limit, memory));
}
void Finalize() {
m_page_table.Finalize();
}
Core::Memory::Memory& GetMemory() {
return m_page_table.GetMemory();
}
Core::Memory::Memory& GetMemory() const {
return m_page_table.GetMemory();
}
Common::PageTable& GetImpl() {
return m_page_table.GetImpl();
}
Common::PageTable& GetImpl() const {
return m_page_table.GetImpl();
}
size_t GetNumGuardPages() const {
return m_page_table.GetNumGuardPages();
}
KScopedLightLock AcquireDeviceMapLock() {
return m_page_table.AcquireDeviceMapLock();
}
Result SetMemoryPermission(KProcessAddress addr, size_t size, Svc::MemoryPermission perm) {
R_RETURN(m_page_table.SetMemoryPermission(addr, size, perm));
}
Result SetProcessMemoryPermission(KProcessAddress addr, size_t size,
Svc::MemoryPermission perm) {
R_RETURN(m_page_table.SetProcessMemoryPermission(addr, size, perm));
}
Result SetMemoryAttribute(KProcessAddress addr, size_t size, KMemoryAttribute mask,
KMemoryAttribute attr) {
R_RETURN(m_page_table.SetMemoryAttribute(addr, size, mask, attr));
}
Result SetHeapSize(KProcessAddress* out, size_t size) {
R_RETURN(m_page_table.SetHeapSize(out, size));
}
Result SetMaxHeapSize(size_t size) {
R_RETURN(m_page_table.SetMaxHeapSize(size));
}
Result QueryInfo(KMemoryInfo* out_info, Svc::PageInfo* out_page_info,
KProcessAddress addr) const {
R_RETURN(m_page_table.QueryInfo(out_info, out_page_info, addr));
}
Result QueryPhysicalAddress(Svc::lp64::PhysicalMemoryInfo* out, KProcessAddress address) {
R_RETURN(m_page_table.QueryPhysicalAddress(out, address));
}
Result QueryStaticMapping(KProcessAddress* out, KPhysicalAddress address, size_t size) {
R_RETURN(m_page_table.QueryStaticMapping(out, address, size));
}
Result QueryIoMapping(KProcessAddress* out, KPhysicalAddress address, size_t size) {
R_RETURN(m_page_table.QueryIoMapping(out, address, size));
}
Result MapMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size) {
R_RETURN(m_page_table.MapMemory(dst_address, src_address, size));
}
Result UnmapMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size) {
R_RETURN(m_page_table.UnmapMemory(dst_address, src_address, size));
}
Result MapCodeMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size) {
R_RETURN(m_page_table.MapCodeMemory(dst_address, src_address, size));
}
Result UnmapCodeMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size) {
R_RETURN(m_page_table.UnmapCodeMemory(dst_address, src_address, size));
}
Result MapIo(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm) {
R_RETURN(m_page_table.MapIo(phys_addr, size, perm));
}
Result MapIoRegion(KProcessAddress dst_address, KPhysicalAddress phys_addr, size_t size,
Svc::MemoryMapping mapping, Svc::MemoryPermission perm) {
R_RETURN(m_page_table.MapIoRegion(dst_address, phys_addr, size, mapping, perm));
}
Result UnmapIoRegion(KProcessAddress dst_address, KPhysicalAddress phys_addr, size_t size,
Svc::MemoryMapping mapping) {
R_RETURN(m_page_table.UnmapIoRegion(dst_address, phys_addr, size, mapping));
}
Result MapStatic(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm) {
R_RETURN(m_page_table.MapStatic(phys_addr, size, perm));
}
Result MapRegion(KMemoryRegionType region_type, KMemoryPermission perm) {
R_RETURN(m_page_table.MapRegion(region_type, perm));
}
Result MapInsecureMemory(KProcessAddress address, size_t size) {
R_RETURN(m_page_table.MapInsecureMemory(address, size));
}
Result UnmapInsecureMemory(KProcessAddress address, size_t size) {
R_RETURN(m_page_table.UnmapInsecureMemory(address, size));
}
Result MapPageGroup(KProcessAddress addr, const KPageGroup& pg, KMemoryState state,
KMemoryPermission perm) {
R_RETURN(m_page_table.MapPageGroup(addr, pg, state, perm));
}
Result UnmapPageGroup(KProcessAddress address, const KPageGroup& pg, KMemoryState state) {
R_RETURN(m_page_table.UnmapPageGroup(address, pg, state));
}
Result MapPages(KProcessAddress* out_addr, size_t num_pages, size_t alignment,
KPhysicalAddress phys_addr, KMemoryState state, KMemoryPermission perm) {
R_RETURN(m_page_table.MapPages(out_addr, num_pages, alignment, phys_addr, state, perm));
}
Result MapPages(KProcessAddress* out_addr, size_t num_pages, KMemoryState state,
KMemoryPermission perm) {
R_RETURN(m_page_table.MapPages(out_addr, num_pages, state, perm));
}
Result MapPages(KProcessAddress address, size_t num_pages, KMemoryState state,
KMemoryPermission perm) {
R_RETURN(m_page_table.MapPages(address, num_pages, state, perm));
}
Result UnmapPages(KProcessAddress addr, size_t num_pages, KMemoryState state) {
R_RETURN(m_page_table.UnmapPages(addr, num_pages, state));
}
Result MakeAndOpenPageGroup(KPageGroup* out, KProcessAddress address, size_t num_pages,
KMemoryState state_mask, KMemoryState state,
KMemoryPermission perm_mask, KMemoryPermission perm,
KMemoryAttribute attr_mask, KMemoryAttribute attr) {
R_RETURN(m_page_table.MakeAndOpenPageGroup(out, address, num_pages, state_mask, state,
perm_mask, perm, attr_mask, attr));
}
Result InvalidateProcessDataCache(KProcessAddress address, size_t size) {
R_RETURN(m_page_table.InvalidateProcessDataCache(address, size));
}
Result ReadDebugMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size) {
R_RETURN(m_page_table.ReadDebugMemory(dst_address, src_address, size));
}
Result ReadDebugIoMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size,
KMemoryState state) {
R_RETURN(m_page_table.ReadDebugIoMemory(dst_address, src_address, size, state));
}
Result WriteDebugMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size) {
R_RETURN(m_page_table.WriteDebugMemory(dst_address, src_address, size));
}
Result WriteDebugIoMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size,
KMemoryState state) {
R_RETURN(m_page_table.WriteDebugIoMemory(dst_address, src_address, size, state));
}
Result LockForMapDeviceAddressSpace(bool* out_is_io, KProcessAddress address, size_t size,
KMemoryPermission perm, bool is_aligned, bool check_heap) {
R_RETURN(m_page_table.LockForMapDeviceAddressSpace(out_is_io, address, size, perm,
is_aligned, check_heap));
}
Result LockForUnmapDeviceAddressSpace(KProcessAddress address, size_t size, bool check_heap) {
R_RETURN(m_page_table.LockForUnmapDeviceAddressSpace(address, size, check_heap));
}
Result UnlockForDeviceAddressSpace(KProcessAddress address, size_t size) {
R_RETURN(m_page_table.UnlockForDeviceAddressSpace(address, size));
}
Result UnlockForDeviceAddressSpacePartialMap(KProcessAddress address, size_t size) {
R_RETURN(m_page_table.UnlockForDeviceAddressSpacePartialMap(address, size));
}
Result OpenMemoryRangeForMapDeviceAddressSpace(KPageTableBase::MemoryRange* out,
KProcessAddress address, size_t size,
KMemoryPermission perm, bool is_aligned) {
R_RETURN(m_page_table.OpenMemoryRangeForMapDeviceAddressSpace(out, address, size, perm,
is_aligned));
}
Result OpenMemoryRangeForUnmapDeviceAddressSpace(KPageTableBase::MemoryRange* out,
KProcessAddress address, size_t size) {
R_RETURN(m_page_table.OpenMemoryRangeForUnmapDeviceAddressSpace(out, address, size));
}
Result LockForIpcUserBuffer(KPhysicalAddress* out, KProcessAddress address, size_t size) {
R_RETURN(m_page_table.LockForIpcUserBuffer(out, address, size));
}
Result UnlockForIpcUserBuffer(KProcessAddress address, size_t size) {
R_RETURN(m_page_table.UnlockForIpcUserBuffer(address, size));
}
Result LockForTransferMemory(KPageGroup* out, KProcessAddress address, size_t size,
KMemoryPermission perm) {
R_RETURN(m_page_table.LockForTransferMemory(out, address, size, perm));
}
Result UnlockForTransferMemory(KProcessAddress address, size_t size, const KPageGroup& pg) {
R_RETURN(m_page_table.UnlockForTransferMemory(address, size, pg));
}
Result LockForCodeMemory(KPageGroup* out, KProcessAddress address, size_t size) {
R_RETURN(m_page_table.LockForCodeMemory(out, address, size));
}
Result UnlockForCodeMemory(KProcessAddress address, size_t size, const KPageGroup& pg) {
R_RETURN(m_page_table.UnlockForCodeMemory(address, size, pg));
}
Result OpenMemoryRangeForProcessCacheOperation(KPageTableBase::MemoryRange* out,
KProcessAddress address, size_t size) {
R_RETURN(m_page_table.OpenMemoryRangeForProcessCacheOperation(out, address, size));
}
Result CopyMemoryFromLinearToUser(KProcessAddress dst_addr, size_t size,
KProcessAddress src_addr, KMemoryState src_state_mask,
KMemoryState src_state, KMemoryPermission src_test_perm,
KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr) {
R_RETURN(m_page_table.CopyMemoryFromLinearToUser(dst_addr, size, src_addr, src_state_mask,
src_state, src_test_perm, src_attr_mask,
src_attr));
}
Result CopyMemoryFromLinearToKernel(void* dst_addr, size_t size, KProcessAddress src_addr,
KMemoryState src_state_mask, KMemoryState src_state,
KMemoryPermission src_test_perm,
KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr) {
R_RETURN(m_page_table.CopyMemoryFromLinearToKernel(dst_addr, size, src_addr, src_state_mask,
src_state, src_test_perm, src_attr_mask,
src_attr));
}
Result CopyMemoryFromUserToLinear(KProcessAddress dst_addr, size_t size,
KMemoryState dst_state_mask, KMemoryState dst_state,
KMemoryPermission dst_test_perm,
KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr,
KProcessAddress src_addr) {
R_RETURN(m_page_table.CopyMemoryFromUserToLinear(dst_addr, size, dst_state_mask, dst_state,
dst_test_perm, dst_attr_mask, dst_attr,
src_addr));
}
Result CopyMemoryFromKernelToLinear(KProcessAddress dst_addr, size_t size,
KMemoryState dst_state_mask, KMemoryState dst_state,
KMemoryPermission dst_test_perm,
KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr,
void* src_addr) {
R_RETURN(m_page_table.CopyMemoryFromKernelToLinear(dst_addr, size, dst_state_mask,
dst_state, dst_test_perm, dst_attr_mask,
dst_attr, src_addr));
}
Result CopyMemoryFromHeapToHeap(KProcessPageTable& dst_page_table, KProcessAddress dst_addr,
size_t size, KMemoryState dst_state_mask,
KMemoryState dst_state, KMemoryPermission dst_test_perm,
KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr,
KProcessAddress src_addr, KMemoryState src_state_mask,
KMemoryState src_state, KMemoryPermission src_test_perm,
KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr) {
R_RETURN(m_page_table.CopyMemoryFromHeapToHeap(
dst_page_table.m_page_table, dst_addr, size, dst_state_mask, dst_state, dst_test_perm,
dst_attr_mask, dst_attr, src_addr, src_state_mask, src_state, src_test_perm,
src_attr_mask, src_attr));
}
Result CopyMemoryFromHeapToHeapWithoutCheckDestination(
KProcessPageTable& dst_page_table, KProcessAddress dst_addr, size_t size,
KMemoryState dst_state_mask, KMemoryState dst_state, KMemoryPermission dst_test_perm,
KMemoryAttribute dst_attr_mask, KMemoryAttribute dst_attr, KProcessAddress src_addr,
KMemoryState src_state_mask, KMemoryState src_state, KMemoryPermission src_test_perm,
KMemoryAttribute src_attr_mask, KMemoryAttribute src_attr) {
R_RETURN(m_page_table.CopyMemoryFromHeapToHeapWithoutCheckDestination(
dst_page_table.m_page_table, dst_addr, size, dst_state_mask, dst_state, dst_test_perm,
dst_attr_mask, dst_attr, src_addr, src_state_mask, src_state, src_test_perm,
src_attr_mask, src_attr));
}
Result SetupForIpc(KProcessAddress* out_dst_addr, size_t size, KProcessAddress src_addr,
KProcessPageTable& src_page_table, KMemoryPermission test_perm,
KMemoryState dst_state, bool send) {
R_RETURN(m_page_table.SetupForIpc(out_dst_addr, size, src_addr, src_page_table.m_page_table,
test_perm, dst_state, send));
}
Result CleanupForIpcServer(KProcessAddress address, size_t size, KMemoryState dst_state) {
R_RETURN(m_page_table.CleanupForIpcServer(address, size, dst_state));
}
Result CleanupForIpcClient(KProcessAddress address, size_t size, KMemoryState dst_state) {
R_RETURN(m_page_table.CleanupForIpcClient(address, size, dst_state));
}
Result MapPhysicalMemory(KProcessAddress address, size_t size) {
R_RETURN(m_page_table.MapPhysicalMemory(address, size));
}
Result UnmapPhysicalMemory(KProcessAddress address, size_t size) {
R_RETURN(m_page_table.UnmapPhysicalMemory(address, size));
}
Result MapPhysicalMemoryUnsafe(KProcessAddress address, size_t size) {
R_RETURN(m_page_table.MapPhysicalMemoryUnsafe(address, size));
}
Result UnmapPhysicalMemoryUnsafe(KProcessAddress address, size_t size) {
R_RETURN(m_page_table.UnmapPhysicalMemoryUnsafe(address, size));
}
Result UnmapProcessMemory(KProcessAddress dst_address, size_t size,
KProcessPageTable& src_page_table, KProcessAddress src_address) {
R_RETURN(m_page_table.UnmapProcessMemory(dst_address, size, src_page_table.m_page_table,
src_address));
}
bool GetPhysicalAddress(KPhysicalAddress* out, KProcessAddress address) {
return m_page_table.GetPhysicalAddress(out, address);
}
bool Contains(KProcessAddress addr, size_t size) const {
return m_page_table.Contains(addr, size);
}
bool IsInAliasRegion(KProcessAddress addr, size_t size) const {
return m_page_table.IsInAliasRegion(addr, size);
}
bool IsInHeapRegion(KProcessAddress addr, size_t size) const {
return m_page_table.IsInHeapRegion(addr, size);
}
bool IsInUnsafeAliasRegion(KProcessAddress addr, size_t size) const {
return m_page_table.IsInUnsafeAliasRegion(addr, size);
}
bool CanContain(KProcessAddress addr, size_t size, KMemoryState state) const {
return m_page_table.CanContain(addr, size, state);
}
KProcessAddress GetAddressSpaceStart() const {
return m_page_table.GetAddressSpaceStart();
}
KProcessAddress GetHeapRegionStart() const {
return m_page_table.GetHeapRegionStart();
}
KProcessAddress GetAliasRegionStart() const {
return m_page_table.GetAliasRegionStart();
}
KProcessAddress GetStackRegionStart() const {
return m_page_table.GetStackRegionStart();
}
KProcessAddress GetKernelMapRegionStart() const {
return m_page_table.GetKernelMapRegionStart();
}
KProcessAddress GetCodeRegionStart() const {
return m_page_table.GetCodeRegionStart();
}
KProcessAddress GetAliasCodeRegionStart() const {
return m_page_table.GetAliasCodeRegionStart();
}
size_t GetAddressSpaceSize() const {
return m_page_table.GetAddressSpaceSize();
}
size_t GetHeapRegionSize() const {
return m_page_table.GetHeapRegionSize();
}
size_t GetAliasRegionSize() const {
return m_page_table.GetAliasRegionSize();
}
size_t GetStackRegionSize() const {
return m_page_table.GetStackRegionSize();
}
size_t GetKernelMapRegionSize() const {
return m_page_table.GetKernelMapRegionSize();
}
size_t GetCodeRegionSize() const {
return m_page_table.GetCodeRegionSize();
}
size_t GetAliasCodeRegionSize() const {
return m_page_table.GetAliasCodeRegionSize();
}
size_t GetNormalMemorySize() const {
return m_page_table.GetNormalMemorySize();
}
size_t GetCodeSize() const {
return m_page_table.GetCodeSize();
}
size_t GetCodeDataSize() const {
return m_page_table.GetCodeDataSize();
}
size_t GetAliasCodeSize() const {
return m_page_table.GetAliasCodeSize();
}
size_t GetAliasCodeDataSize() const {
return m_page_table.GetAliasCodeDataSize();
}
u32 GetAllocateOption() const {
return m_page_table.GetAllocateOption();
}
u32 GetAddressSpaceWidth() const {
return m_page_table.GetAddressSpaceWidth();
}
KPhysicalAddress GetHeapPhysicalAddress(KVirtualAddress address) {
return m_page_table.GetHeapPhysicalAddress(address);
}
u8* GetHeapVirtualPointer(KPhysicalAddress address) {
return m_page_table.GetHeapVirtualPointer(address);
}
KVirtualAddress GetHeapVirtualAddress(KPhysicalAddress address) {
return m_page_table.GetHeapVirtualAddress(address);
}
KBlockInfoManager* GetBlockInfoManager() {
return m_page_table.GetBlockInfoManager();
}
KPageTable& GetBasePageTable() {
return m_page_table;
}
const KPageTable& GetBasePageTable() const {
return m_page_table;
}
};
} // namespace Kernel

View File

@@ -383,7 +383,7 @@ Result KServerSession::SendReply(bool is_hle) {
if (event != nullptr) {
// // Get the client process/page table.
// KProcess *client_process = client_thread->GetOwnerProcess();
// KPageTable *client_page_table = std::addressof(client_process->PageTable());
// KProcessPageTable *client_page_table = std::addressof(client_process->PageTable());
// // If we need to, reply with an async error.
// if (R_FAILED(client_result)) {

View File

@@ -40,7 +40,7 @@ Result KSecureSystemResource::Initialize(size_t size, KResourceLimit* resource_l
// Get resource pointer.
KPhysicalAddress resource_paddr =
KPageTable::GetHeapPhysicalAddress(m_kernel.MemoryLayout(), m_resource_address);
KPageTable::GetHeapPhysicalAddress(m_kernel, m_resource_address);
auto* resource =
m_kernel.System().DeviceMemory().GetPointer<KPageTableManager::RefCount>(resource_paddr);

View File

@@ -37,8 +37,8 @@ Result KThreadLocalPage::Initialize(KernelCore& kernel, KProcess* process) {
Result KThreadLocalPage::Finalize() {
// Get the physical address of the page.
const KPhysicalAddress phys_addr = m_owner->GetPageTable().GetPhysicalAddr(m_virt_addr);
ASSERT(phys_addr);
KPhysicalAddress phys_addr{};
ASSERT(m_owner->GetPageTable().GetPhysicalAddress(std::addressof(phys_addr), m_virt_addr));
// Unmap the page.
R_TRY(m_owner->GetPageTable().UnmapPages(this->GetAddress(), 1, KMemoryState::ThreadLocal));

View File

@@ -1,389 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <bit>
#include "common/bit_util.h"
#include "common/logging/log.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/process_capability.h"
#include "core/hle/kernel/svc_results.h"
namespace Kernel {
namespace {
// clang-format off
// Shift offsets for kernel capability types.
enum : u32 {
CapabilityOffset_PriorityAndCoreNum = 3,
CapabilityOffset_Syscall = 4,
CapabilityOffset_MapPhysical = 6,
CapabilityOffset_MapIO = 7,
CapabilityOffset_MapRegion = 10,
CapabilityOffset_Interrupt = 11,
CapabilityOffset_ProgramType = 13,
CapabilityOffset_KernelVersion = 14,
CapabilityOffset_HandleTableSize = 15,
CapabilityOffset_Debug = 16,
};
// Combined mask of all parameters that may be initialized only once.
constexpr u32 InitializeOnceMask = (1U << CapabilityOffset_PriorityAndCoreNum) |
(1U << CapabilityOffset_ProgramType) |
(1U << CapabilityOffset_KernelVersion) |
(1U << CapabilityOffset_HandleTableSize) |
(1U << CapabilityOffset_Debug);
// Packed kernel version indicating 10.4.0
constexpr u32 PackedKernelVersion = 0x520000;
// Indicates possible types of capabilities that can be specified.
enum class CapabilityType : u32 {
Unset = 0U,
PriorityAndCoreNum = (1U << CapabilityOffset_PriorityAndCoreNum) - 1,
Syscall = (1U << CapabilityOffset_Syscall) - 1,
MapPhysical = (1U << CapabilityOffset_MapPhysical) - 1,
MapIO = (1U << CapabilityOffset_MapIO) - 1,
MapRegion = (1U << CapabilityOffset_MapRegion) - 1,
Interrupt = (1U << CapabilityOffset_Interrupt) - 1,
ProgramType = (1U << CapabilityOffset_ProgramType) - 1,
KernelVersion = (1U << CapabilityOffset_KernelVersion) - 1,
HandleTableSize = (1U << CapabilityOffset_HandleTableSize) - 1,
Debug = (1U << CapabilityOffset_Debug) - 1,
Ignorable = 0xFFFFFFFFU,
};
// clang-format on
constexpr CapabilityType GetCapabilityType(u32 value) {
return static_cast<CapabilityType>((~value & (value + 1)) - 1);
}
u32 GetFlagBitOffset(CapabilityType type) {
const auto value = static_cast<u32>(type);
return static_cast<u32>(Common::BitSize<u32>() - static_cast<u32>(std::countl_zero(value)));
}
} // Anonymous namespace
Result ProcessCapabilities::InitializeForKernelProcess(const u32* capabilities,
std::size_t num_capabilities,
KPageTable& page_table) {
Clear();
// Allow all cores and priorities.
core_mask = 0xF;
priority_mask = 0xFFFFFFFFFFFFFFFF;
kernel_version = PackedKernelVersion;
return ParseCapabilities(capabilities, num_capabilities, page_table);
}
Result ProcessCapabilities::InitializeForUserProcess(const u32* capabilities,
std::size_t num_capabilities,
KPageTable& page_table) {
Clear();
return ParseCapabilities(capabilities, num_capabilities, page_table);
}
void ProcessCapabilities::InitializeForMetadatalessProcess() {
// Allow all cores and priorities
core_mask = 0xF;
priority_mask = 0xFFFFFFFFFFFFFFFF;
kernel_version = PackedKernelVersion;
// Allow all system calls and interrupts.
svc_capabilities.set();
interrupt_capabilities.set();
// Allow using the maximum possible amount of handles
handle_table_size = static_cast<s32>(KHandleTable::MaxTableSize);
// Allow all debugging capabilities.
is_debuggable = true;
can_force_debug = true;
}
Result ProcessCapabilities::ParseCapabilities(const u32* capabilities, std::size_t num_capabilities,
KPageTable& page_table) {
u32 set_flags = 0;
u32 set_svc_bits = 0;
for (std::size_t i = 0; i < num_capabilities; ++i) {
const u32 descriptor = capabilities[i];
const auto type = GetCapabilityType(descriptor);
if (type == CapabilityType::MapPhysical) {
i++;
// The MapPhysical type uses two descriptor flags for its parameters.
// If there's only one, then there's a problem.
if (i >= num_capabilities) {
LOG_ERROR(Kernel, "Invalid combination! i={}", i);
return ResultInvalidCombination;
}
const auto size_flags = capabilities[i];
if (GetCapabilityType(size_flags) != CapabilityType::MapPhysical) {
LOG_ERROR(Kernel, "Invalid capability type! size_flags={}", size_flags);
return ResultInvalidCombination;
}
const auto result = HandleMapPhysicalFlags(descriptor, size_flags, page_table);
if (result.IsError()) {
LOG_ERROR(Kernel, "Failed to map physical flags! descriptor={}, size_flags={}",
descriptor, size_flags);
return result;
}
} else {
const auto result =
ParseSingleFlagCapability(set_flags, set_svc_bits, descriptor, page_table);
if (result.IsError()) {
LOG_ERROR(
Kernel,
"Failed to parse capability flag! set_flags={}, set_svc_bits={}, descriptor={}",
set_flags, set_svc_bits, descriptor);
return result;
}
}
}
return ResultSuccess;
}
Result ProcessCapabilities::ParseSingleFlagCapability(u32& set_flags, u32& set_svc_bits, u32 flag,
KPageTable& page_table) {
const auto type = GetCapabilityType(flag);
if (type == CapabilityType::Unset) {
return ResultInvalidArgument;
}
// Bail early on ignorable entries, as one would expect,
// ignorable descriptors can be ignored.
if (type == CapabilityType::Ignorable) {
return ResultSuccess;
}
// Ensure that the give flag hasn't already been initialized before.
// If it has been, then bail.
const u32 flag_length = GetFlagBitOffset(type);
const u32 set_flag = 1U << flag_length;
if ((set_flag & set_flags & InitializeOnceMask) != 0) {
LOG_ERROR(Kernel,
"Attempted to initialize flags that may only be initialized once. set_flags={}",
set_flags);
return ResultInvalidCombination;
}
set_flags |= set_flag;
switch (type) {
case CapabilityType::PriorityAndCoreNum:
return HandlePriorityCoreNumFlags(flag);
case CapabilityType::Syscall:
return HandleSyscallFlags(set_svc_bits, flag);
case CapabilityType::MapIO:
return HandleMapIOFlags(flag, page_table);
case CapabilityType::MapRegion:
return HandleMapRegionFlags(flag, page_table);
case CapabilityType::Interrupt:
return HandleInterruptFlags(flag);
case CapabilityType::ProgramType:
return HandleProgramTypeFlags(flag);
case CapabilityType::KernelVersion:
return HandleKernelVersionFlags(flag);
case CapabilityType::HandleTableSize:
return HandleHandleTableFlags(flag);
case CapabilityType::Debug:
return HandleDebugFlags(flag);
default:
break;
}
LOG_ERROR(Kernel, "Invalid capability type! type={}", type);
return ResultInvalidArgument;
}
void ProcessCapabilities::Clear() {
svc_capabilities.reset();
interrupt_capabilities.reset();
core_mask = 0;
priority_mask = 0;
handle_table_size = 0;
kernel_version = 0;
program_type = ProgramType::SysModule;
is_debuggable = false;
can_force_debug = false;
}
Result ProcessCapabilities::HandlePriorityCoreNumFlags(u32 flags) {
if (priority_mask != 0 || core_mask != 0) {
LOG_ERROR(Kernel, "Core or priority mask are not zero! priority_mask={}, core_mask={}",
priority_mask, core_mask);
return ResultInvalidArgument;
}
const u32 core_num_min = (flags >> 16) & 0xFF;
const u32 core_num_max = (flags >> 24) & 0xFF;
if (core_num_min > core_num_max) {
LOG_ERROR(Kernel, "Core min is greater than core max! core_num_min={}, core_num_max={}",
core_num_min, core_num_max);
return ResultInvalidCombination;
}
const u32 priority_min = (flags >> 10) & 0x3F;
const u32 priority_max = (flags >> 4) & 0x3F;
if (priority_min > priority_max) {
LOG_ERROR(Kernel,
"Priority min is greater than priority max! priority_min={}, priority_max={}",
core_num_min, priority_max);
return ResultInvalidCombination;
}
// The switch only has 4 usable cores.
if (core_num_max >= 4) {
LOG_ERROR(Kernel, "Invalid max cores specified! core_num_max={}", core_num_max);
return ResultInvalidCoreId;
}
const auto make_mask = [](u64 min, u64 max) {
const u64 range = max - min + 1;
const u64 mask = (1ULL << range) - 1;
return mask << min;
};
core_mask = make_mask(core_num_min, core_num_max);
priority_mask = make_mask(priority_min, priority_max);
return ResultSuccess;
}
Result ProcessCapabilities::HandleSyscallFlags(u32& set_svc_bits, u32 flags) {
const u32 index = flags >> 29;
const u32 svc_bit = 1U << index;
// If we've already set this svc before, bail.
if ((set_svc_bits & svc_bit) != 0) {
return ResultInvalidCombination;
}
set_svc_bits |= svc_bit;
const u32 svc_mask = (flags >> 5) & 0xFFFFFF;
for (u32 i = 0; i < 24; ++i) {
const u32 svc_number = index * 24 + i;
if ((svc_mask & (1U << i)) == 0) {
continue;
}
svc_capabilities[svc_number] = true;
}
return ResultSuccess;
}
Result ProcessCapabilities::HandleMapPhysicalFlags(u32 flags, u32 size_flags,
KPageTable& page_table) {
// TODO(Lioncache): Implement once the memory manager can handle this.
return ResultSuccess;
}
Result ProcessCapabilities::HandleMapIOFlags(u32 flags, KPageTable& page_table) {
// TODO(Lioncache): Implement once the memory manager can handle this.
return ResultSuccess;
}
Result ProcessCapabilities::HandleMapRegionFlags(u32 flags, KPageTable& page_table) {
// TODO(Lioncache): Implement once the memory manager can handle this.
return ResultSuccess;
}
Result ProcessCapabilities::HandleInterruptFlags(u32 flags) {
constexpr u32 interrupt_ignore_value = 0x3FF;
const u32 interrupt0 = (flags >> 12) & 0x3FF;
const u32 interrupt1 = (flags >> 22) & 0x3FF;
for (u32 interrupt : {interrupt0, interrupt1}) {
if (interrupt == interrupt_ignore_value) {
continue;
}
// NOTE:
// This should be checking a generic interrupt controller value
// as part of the calculation, however, given we don't currently
// emulate that, it's sufficient to mark every interrupt as defined.
if (interrupt >= interrupt_capabilities.size()) {
LOG_ERROR(Kernel, "Process interrupt capability is out of range! svc_number={}",
interrupt);
return ResultOutOfRange;
}
interrupt_capabilities[interrupt] = true;
}
return ResultSuccess;
}
Result ProcessCapabilities::HandleProgramTypeFlags(u32 flags) {
const u32 reserved = flags >> 17;
if (reserved != 0) {
LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved);
return ResultReservedUsed;
}
program_type = static_cast<ProgramType>((flags >> 14) & 0b111);
return ResultSuccess;
}
Result ProcessCapabilities::HandleKernelVersionFlags(u32 flags) {
// Yes, the internal member variable is checked in the actual kernel here.
// This might look odd for options that are only allowed to be initialized
// just once, however the kernel has a separate initialization function for
// kernel processes and userland processes. The kernel variant sets this
// member variable ahead of time.
const u32 major_version = kernel_version >> 19;
if (major_version != 0 || flags < 0x80000) {
LOG_ERROR(Kernel,
"Kernel version is non zero or flags are too small! major_version={}, flags={}",
major_version, flags);
return ResultInvalidArgument;
}
kernel_version = flags;
return ResultSuccess;
}
Result ProcessCapabilities::HandleHandleTableFlags(u32 flags) {
const u32 reserved = flags >> 26;
if (reserved != 0) {
LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved);
return ResultReservedUsed;
}
handle_table_size = static_cast<s32>((flags >> 16) & 0x3FF);
return ResultSuccess;
}
Result ProcessCapabilities::HandleDebugFlags(u32 flags) {
const u32 reserved = flags >> 19;
if (reserved != 0) {
LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved);
return ResultReservedUsed;
}
is_debuggable = (flags & 0x20000) != 0;
can_force_debug = (flags & 0x40000) != 0;
return ResultSuccess;
}
} // namespace Kernel

View File

@@ -1,266 +0,0 @@
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <bitset>
#include "common/common_types.h"
union Result;
namespace Kernel {
class KPageTable;
/// The possible types of programs that may be indicated
/// by the program type capability descriptor.
enum class ProgramType {
SysModule,
Application,
Applet,
};
/// Handles kernel capability descriptors that are provided by
/// application metadata. These descriptors provide information
/// that alters certain parameters for kernel process instance
/// that will run said application (or applet).
///
/// Capabilities are a sequence of flag descriptors, that indicate various
/// configurations and constraints for a particular process.
///
/// Flag types are indicated by a sequence of set low bits. E.g. the
/// types are indicated with the low bits as follows (where x indicates "don't care"):
///
/// - Priority and core mask : 0bxxxxxxxxxxxx0111
/// - Allowed service call mask: 0bxxxxxxxxxxx01111
/// - Map physical memory : 0bxxxxxxxxx0111111
/// - Map IO memory : 0bxxxxxxxx01111111
/// - Interrupts : 0bxxxx011111111111
/// - Application type : 0bxx01111111111111
/// - Kernel version : 0bx011111111111111
/// - Handle table size : 0b0111111111111111
/// - Debugger flags : 0b1111111111111111
///
/// These are essentially a bit offset subtracted by 1 to create a mask.
/// e.g. The first entry in the above list is simply bit 3 (value 8 -> 0b1000)
/// subtracted by one (7 -> 0b0111)
///
/// An example of a bit layout (using the map physical layout):
/// <example>
/// The MapPhysical type indicates a sequence entry pair of:
///
/// [initial, memory_flags], where:
///
/// initial:
/// bits:
/// 7-24: Starting page to map memory at.
/// 25 : Indicates if the memory should be mapped as read only.
///
/// memory_flags:
/// bits:
/// 7-20 : Number of pages to map
/// 21-25: Seems to be reserved (still checked against though)
/// 26 : Whether or not the memory being mapped is IO memory, or physical memory
/// </example>
///
class ProcessCapabilities {
public:
using InterruptCapabilities = std::bitset<1024>;
using SyscallCapabilities = std::bitset<192>;
ProcessCapabilities() = default;
ProcessCapabilities(const ProcessCapabilities&) = delete;
ProcessCapabilities(ProcessCapabilities&&) = default;
ProcessCapabilities& operator=(const ProcessCapabilities&) = delete;
ProcessCapabilities& operator=(ProcessCapabilities&&) = default;
/// Initializes this process capabilities instance for a kernel process.
///
/// @param capabilities The capabilities to parse
/// @param num_capabilities The number of capabilities to parse.
/// @param page_table The memory manager to use for handling any mapping-related
/// operations (such as mapping IO memory, etc).
///
/// @returns ResultSuccess if this capabilities instance was able to be initialized,
/// otherwise, an error code upon failure.
///
Result InitializeForKernelProcess(const u32* capabilities, std::size_t num_capabilities,
KPageTable& page_table);
/// Initializes this process capabilities instance for a userland process.
///
/// @param capabilities The capabilities to parse.
/// @param num_capabilities The total number of capabilities to parse.
/// @param page_table The memory manager to use for handling any mapping-related
/// operations (such as mapping IO memory, etc).
///
/// @returns ResultSuccess if this capabilities instance was able to be initialized,
/// otherwise, an error code upon failure.
///
Result InitializeForUserProcess(const u32* capabilities, std::size_t num_capabilities,
KPageTable& page_table);
/// Initializes this process capabilities instance for a process that does not
/// have any metadata to parse.
///
/// This is necessary, as we allow running raw executables, and the internal
/// kernel process capabilities also determine what CPU cores the process is
/// allowed to run on, and what priorities are allowed for threads. It also
/// determines the max handle table size, what the program type is, whether or
/// not the process can be debugged, or whether it's possible for a process to
/// forcibly debug another process.
///
/// Given the above, this essentially enables all capabilities across the board
/// for the process. It allows the process to:
///
/// - Run on any core
/// - Use any thread priority
/// - Use the maximum amount of handles a process is allowed to.
/// - Be debuggable
/// - Forcibly debug other processes.
///
/// Note that this is not a behavior that the kernel allows a process to do via
/// a single function like this. This is yuzu-specific behavior to handle
/// executables with no capability descriptors whatsoever to derive behavior from.
/// It being yuzu-specific is why this is also not the default behavior and not
/// done by default in the constructor.
///
void InitializeForMetadatalessProcess();
/// Gets the allowable core mask
u64 GetCoreMask() const {
return core_mask;
}
/// Gets the allowable priority mask
u64 GetPriorityMask() const {
return priority_mask;
}
/// Gets the SVC access permission bits
const SyscallCapabilities& GetServiceCapabilities() const {
return svc_capabilities;
}
/// Gets the valid interrupt bits.
const InterruptCapabilities& GetInterruptCapabilities() const {
return interrupt_capabilities;
}
/// Gets the program type for this process.
ProgramType GetProgramType() const {
return program_type;
}
/// Gets the number of total allowable handles for the process' handle table.
s32 GetHandleTableSize() const {
return handle_table_size;
}
/// Gets the kernel version value.
u32 GetKernelVersion() const {
return kernel_version;
}
/// Whether or not this process can be debugged.
bool IsDebuggable() const {
return is_debuggable;
}
/// Whether or not this process can forcibly debug another
/// process, even if that process is not considered debuggable.
bool CanForceDebug() const {
return can_force_debug;
}
private:
/// Attempts to parse a given sequence of capability descriptors.
///
/// @param capabilities The sequence of capability descriptors to parse.
/// @param num_capabilities The number of descriptors within the given sequence.
/// @param page_table The memory manager that will perform any memory
/// mapping if necessary.
///
/// @return ResultSuccess if no errors occur, otherwise an error code.
///
Result ParseCapabilities(const u32* capabilities, std::size_t num_capabilities,
KPageTable& page_table);
/// Attempts to parse a capability descriptor that is only represented by a
/// single flag set.
///
/// @param set_flags Running set of flags that are used to catch
/// flags being initialized more than once when they shouldn't be.
/// @param set_svc_bits Running set of bits representing the allowed supervisor calls mask.
/// @param flag The flag to attempt to parse.
/// @param page_table The memory manager that will perform any memory
/// mapping if necessary.
///
/// @return ResultSuccess if no errors occurred, otherwise an error code.
///
Result ParseSingleFlagCapability(u32& set_flags, u32& set_svc_bits, u32 flag,
KPageTable& page_table);
/// Clears the internal state of this process capability instance. Necessary,
/// to have a sane starting point due to us allowing running executables without
/// configuration metadata. We assume a process is not going to have metadata,
/// and if it turns out that the process does, in fact, have metadata, then
/// we attempt to parse it. Thus, we need this to reset data members back to
/// a good state.
///
/// DO NOT ever make this a public member function. This isn't an invariant
/// anything external should depend upon (and if anything comes to rely on it,
/// you should immediately be questioning the design of that thing, not this
/// class. If the kernel itself can run without depending on behavior like that,
/// then so can yuzu).
///
void Clear();
/// Handles flags related to the priority and core number capability flags.
Result HandlePriorityCoreNumFlags(u32 flags);
/// Handles flags related to determining the allowable SVC mask.
Result HandleSyscallFlags(u32& set_svc_bits, u32 flags);
/// Handles flags related to mapping physical memory pages.
Result HandleMapPhysicalFlags(u32 flags, u32 size_flags, KPageTable& page_table);
/// Handles flags related to mapping IO pages.
Result HandleMapIOFlags(u32 flags, KPageTable& page_table);
/// Handles flags related to mapping physical memory regions.
Result HandleMapRegionFlags(u32 flags, KPageTable& page_table);
/// Handles flags related to the interrupt capability flags.
Result HandleInterruptFlags(u32 flags);
/// Handles flags related to the program type.
Result HandleProgramTypeFlags(u32 flags);
/// Handles flags related to the handle table size.
Result HandleHandleTableFlags(u32 flags);
/// Handles flags related to the kernel version capability flags.
Result HandleKernelVersionFlags(u32 flags);
/// Handles flags related to debug-specific capabilities.
Result HandleDebugFlags(u32 flags);
SyscallCapabilities svc_capabilities;
InterruptCapabilities interrupt_capabilities;
u64 core_mask = 0;
u64 priority_mask = 0;
s32 handle_table_size = 0;
u32 kernel_version = 0;
ProgramType program_type = ProgramType::SysModule;
bool is_debuggable = false;
bool can_force_debug = false;
};
} // namespace Kernel

View File

@@ -29,7 +29,8 @@ constexpr bool IsValidAddressRange(u64 address, u64 size) {
// Helper function that performs the common sanity checks for svcMapMemory
// and svcUnmapMemory. This is doable, as both functions perform their sanitizing
// in the same order.
Result MapUnmapMemorySanityChecks(const KPageTable& manager, u64 dst_addr, u64 src_addr, u64 size) {
Result MapUnmapMemorySanityChecks(const KProcessPageTable& manager, u64 dst_addr, u64 src_addr,
u64 size) {
if (!Common::Is4KBAligned(dst_addr)) {
LOG_ERROR(Kernel_SVC, "Destination address is not aligned to 4KB, 0x{:016X}", dst_addr);
R_THROW(ResultInvalidAddress);
@@ -123,7 +124,8 @@ Result SetMemoryAttribute(Core::System& system, u64 address, u64 size, u32 mask,
R_UNLESS(page_table.Contains(address, size), ResultInvalidCurrentMemory);
// Set the memory attribute.
R_RETURN(page_table.SetMemoryAttribute(address, size, mask, attr));
R_RETURN(page_table.SetMemoryAttribute(address, size, static_cast<KMemoryAttribute>(mask),
static_cast<KMemoryAttribute>(attr)));
}
/// Maps a memory range into a different range.

View File

@@ -16,7 +16,14 @@ Result SetHeapSize(Core::System& system, u64* out_address, u64 size) {
R_UNLESS(size < MainMemorySizeMax, ResultInvalidSize);
// Set the heap size.
R_RETURN(GetCurrentProcess(system.Kernel()).GetPageTable().SetHeapSize(out_address, size));
KProcessAddress address{};
R_TRY(GetCurrentProcess(system.Kernel())
.GetPageTable()
.SetHeapSize(std::addressof(address), size));
// We succeeded.
*out_address = GetInteger(address);
R_SUCCEED();
}
/// Maps memory at a desired address

View File

@@ -247,8 +247,7 @@ Result UnmapProcessCodeMemory(Core::System& system, Handle process_handle, u64 d
R_THROW(ResultInvalidCurrentMemory);
}
R_RETURN(page_table.UnmapCodeMemory(dst_address, src_address, size,
KPageTable::ICacheInvalidationStrategy::InvalidateAll));
R_RETURN(page_table.UnmapCodeMemory(dst_address, src_address, size));
}
Result SetProcessMemoryPermission64(Core::System& system, Handle process_handle, uint64_t address,

View File

@@ -31,12 +31,12 @@ Result QueryProcessMemory(Core::System& system, uint64_t out_memory_info, PageIn
}
auto& current_memory{GetCurrentMemory(system.Kernel())};
const auto memory_info{process->GetPageTable().QueryInfo(address).GetSvcMemoryInfo()};
current_memory.WriteBlock(out_memory_info, std::addressof(memory_info), sizeof(memory_info));
KMemoryInfo mem_info;
R_TRY(process->GetPageTable().QueryInfo(std::addressof(mem_info), out_page_info, address));
//! This is supposed to be part of the QueryInfo call.
*out_page_info = {};
const auto svc_mem_info = mem_info.GetSvcMemoryInfo();
current_memory.WriteBlock(out_memory_info, std::addressof(svc_mem_info), sizeof(svc_mem_info));
R_SUCCEED();
}

View File

@@ -407,3 +407,34 @@ constexpr inline Result __TmpCurrentResultReference = ResultSuccess;
/// Evaluates a boolean expression, and succeeds if that expression is true.
#define R_SUCCEED_IF(expr) R_UNLESS(!(expr), ResultSuccess)
#define R_TRY_CATCH(res_expr) \
{ \
const auto R_CURRENT_RESULT = (res_expr); \
if (R_FAILED(R_CURRENT_RESULT)) { \
if (false)
#define R_END_TRY_CATCH \
else if (R_FAILED(R_CURRENT_RESULT)) { \
R_THROW(R_CURRENT_RESULT); \
} \
} \
}
#define R_CATCH_ALL() \
} \
else if (R_FAILED(R_CURRENT_RESULT)) { \
if (true)
#define R_CATCH(res_expr) \
} \
else if ((res_expr) == (R_CURRENT_RESULT)) { \
if (true)
#define R_CONVERT(catch_type, convert_type) \
R_CATCH(catch_type) { R_THROW(static_cast<Result>(convert_type)); }
#define R_CONVERT_ALL(convert_type) \
R_CATCH_ALL() { R_THROW(static_cast<Result>(convert_type)); }
#define R_ASSERT(res_expr) ASSERT(R_SUCCEEDED(res_expr))

View File

@@ -3,11 +3,13 @@
#include <algorithm>
#include <array>
#include "common/common_types.h"
#include "common/fs/file.h"
#include "common/fs/path_util.h"
#include "common/logging/log.h"
#include "common/polyfill_ranges.h"
#include "common/stb.h"
#include "common/string_util.h"
#include "common/swap.h"
#include "core/constants.h"
@@ -38,9 +40,36 @@ static std::filesystem::path GetImagePath(const Common::UUID& uuid) {
fmt::format("system/save/8000000000000010/su/avators/{}.jpg", uuid.FormattedString());
}
static constexpr u32 SanitizeJPEGSize(std::size_t size) {
static void JPGToMemory(void* context, void* data, int len) {
std::vector<u8>* jpg_image = static_cast<std::vector<u8>*>(context);
unsigned char* jpg = static_cast<unsigned char*>(data);
jpg_image->insert(jpg_image->end(), jpg, jpg + len);
}
static void SanitizeJPEGImageSize(std::vector<u8>& image) {
constexpr std::size_t max_jpeg_image_size = 0x20000;
return static_cast<u32>(std::min(size, max_jpeg_image_size));
constexpr int profile_dimensions = 256;
int original_width, original_height, color_channels;
const auto plain_image =
stbi_load_from_memory(image.data(), static_cast<int>(image.size()), &original_width,
&original_height, &color_channels, STBI_rgb);
// Resize image to match 256*256
if (original_width != profile_dimensions || original_height != profile_dimensions) {
// Use vector instead of array to avoid overflowing the stack
std::vector<u8> out_image(profile_dimensions * profile_dimensions * STBI_rgb);
stbir_resize_uint8_srgb(plain_image, original_width, original_height, 0, out_image.data(),
profile_dimensions, profile_dimensions, 0, STBI_rgb, 0,
STBIR_FILTER_BOX);
image.clear();
if (!stbi_write_jpg_to_func(JPGToMemory, &image, profile_dimensions, profile_dimensions,
STBI_rgb, out_image.data(), 0)) {
LOG_ERROR(Service_ACC, "Failed to resize the user provided image.");
}
}
image.resize(std::min(image.size(), max_jpeg_image_size));
}
class IManagerForSystemService final : public ServiceFramework<IManagerForSystemService> {
@@ -339,19 +368,20 @@ protected:
LOG_WARNING(Service_ACC,
"Failed to load user provided image! Falling back to built-in backup...");
ctx.WriteBuffer(Core::Constants::ACCOUNT_BACKUP_JPEG);
rb.Push(SanitizeJPEGSize(Core::Constants::ACCOUNT_BACKUP_JPEG.size()));
rb.Push(static_cast<u32>(Core::Constants::ACCOUNT_BACKUP_JPEG.size()));
return;
}
const u32 size = SanitizeJPEGSize(image.GetSize());
std::vector<u8> buffer(size);
std::vector<u8> buffer(image.GetSize());
if (image.Read(buffer) != buffer.size()) {
LOG_ERROR(Service_ACC, "Failed to read all the bytes in the user provided image.");
}
SanitizeJPEGImageSize(buffer);
ctx.WriteBuffer(buffer);
rb.Push<u32>(size);
rb.Push(static_cast<u32>(buffer.size()));
}
void GetImageSize(HLERequestContext& ctx) {
@@ -365,10 +395,18 @@ protected:
if (!image.IsOpen()) {
LOG_WARNING(Service_ACC,
"Failed to load user provided image! Falling back to built-in backup...");
rb.Push(SanitizeJPEGSize(Core::Constants::ACCOUNT_BACKUP_JPEG.size()));
} else {
rb.Push(SanitizeJPEGSize(image.GetSize()));
rb.Push(static_cast<u32>(Core::Constants::ACCOUNT_BACKUP_JPEG.size()));
return;
}
std::vector<u8> buffer(image.GetSize());
if (image.Read(buffer) != buffer.size()) {
LOG_ERROR(Service_ACC, "Failed to read all the bytes in the user provided image.");
}
SanitizeJPEGImageSize(buffer);
rb.Push(static_cast<u32>(buffer.size()));
}
void Store(HLERequestContext& ctx) {

View File

@@ -330,8 +330,7 @@ void WebBrowser::ExtractOfflineRomFS() {
LOG_DEBUG(Service_AM, "Extracting RomFS to {}",
Common::FS::PathToUTF8String(offline_cache_dir));
const auto extracted_romfs_dir =
FileSys::ExtractRomFS(offline_romfs, FileSys::RomFSExtractionType::SingleDiscard);
const auto extracted_romfs_dir = FileSys::ExtractRomFS(offline_romfs);
const auto temp_dir = system.GetFilesystem()->CreateDirectory(
Common::FS::PathToUTF8String(offline_cache_dir), FileSys::Mode::ReadWrite);

View File

@@ -69,6 +69,30 @@ enum class AppletId : u32 {
MyPage = 0x1A,
};
enum class AppletProgramId : u64 {
QLaunch = 0x0100000000001000ull,
Auth = 0x0100000000001001ull,
Cabinet = 0x0100000000001002ull,
Controller = 0x0100000000001003ull,
DataErase = 0x0100000000001004ull,
Error = 0x0100000000001005ull,
NetConnect = 0x0100000000001006ull,
ProfileSelect = 0x0100000000001007ull,
SoftwareKeyboard = 0x0100000000001008ull,
MiiEdit = 0x0100000000001009ull,
Web = 0x010000000000100Aull,
Shop = 0x010000000000100Bull,
OverlayDisplay = 0x010000000000100Cull,
PhotoViewer = 0x010000000000100Dull,
Settings = 0x010000000000100Eull,
OfflineWeb = 0x010000000000100Full,
LoginShare = 0x0100000000001010ull,
WebAuth = 0x0100000000001011ull,
Starter = 0x0100000000001012ull,
MyPage = 0x0100000000001013ull,
MaxProgramId = 0x0100000000001FFFull,
};
enum class LibraryAppletMode : u32 {
AllForeground = 0,
Background = 1,

View File

@@ -1108,9 +1108,9 @@ Result Controller_NPad::DisconnectNpad(Core::HID::NpadIdType npad_id) {
shared_memory->sixaxis_dual_right_properties.raw = 0;
shared_memory->sixaxis_left_properties.raw = 0;
shared_memory->sixaxis_right_properties.raw = 0;
shared_memory->battery_level_dual = 0;
shared_memory->battery_level_left = 0;
shared_memory->battery_level_right = 0;
shared_memory->battery_level_dual = Core::HID::NpadBatteryLevel::Empty;
shared_memory->battery_level_left = Core::HID::NpadBatteryLevel::Empty;
shared_memory->battery_level_right = Core::HID::NpadBatteryLevel::Empty;
shared_memory->fullkey_color = {
.attribute = ColorAttribute::NoController,
.fullkey = {},

View File

@@ -1353,7 +1353,7 @@ void Hid::IsUnintendedHomeButtonInputProtectionEnabled(HLERequestContext& ctx) {
void Hid::EnableUnintendedHomeButtonInputProtection(HLERequestContext& ctx) {
IPC::RequestParser rp{ctx};
struct Parameters {
bool unintended_home_button_input_protection;
bool is_enabled;
INSERT_PADDING_BYTES_NOINIT(3);
Core::HID::NpadIdType npad_id;
u64 applet_resource_user_id;
@@ -1364,13 +1364,11 @@ void Hid::EnableUnintendedHomeButtonInputProtection(HLERequestContext& ctx) {
auto& controller = GetAppletResource()->GetController<Controller_NPad>(HidController::NPad);
const auto result = controller.SetUnintendedHomeButtonInputProtectionEnabled(
parameters.unintended_home_button_input_protection, parameters.npad_id);
parameters.is_enabled, parameters.npad_id);
LOG_WARNING(Service_HID,
"(STUBBED) called, unintended_home_button_input_protection={}, npad_id={},"
"applet_resource_user_id={}",
parameters.unintended_home_button_input_protection, parameters.npad_id,
parameters.applet_resource_user_id);
LOG_DEBUG(Service_HID,
"(STUBBED) called, is_enabled={}, npad_id={}, applet_resource_user_id={}",
parameters.is_enabled, parameters.npad_id, parameters.applet_resource_user_id);
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(result);

View File

@@ -32,15 +32,15 @@ struct Lifo {
}
std::size_t GetPreviousEntryIndex() const {
return static_cast<size_t>((buffer_tail + total_buffer_count - 1) % total_buffer_count);
return static_cast<size_t>((buffer_tail + max_buffer_size - 1) % max_buffer_size);
}
std::size_t GetNextEntryIndex() const {
return static_cast<size_t>((buffer_tail + 1) % total_buffer_count);
return static_cast<size_t>((buffer_tail + 1) % max_buffer_size);
}
void WriteNextEntry(const State& new_state) {
if (buffer_count < total_buffer_count - 1) {
if (buffer_count < static_cast<s64>(max_buffer_size) - 1) {
buffer_count++;
}
buffer_tail = GetNextEntryIndex();

View File

@@ -286,9 +286,14 @@ public:
rb.Push(ResultSuccess);
}
bool ValidateRegionForMap(Kernel::KPageTable& page_table, VAddr start, std::size_t size) const {
bool ValidateRegionForMap(Kernel::KProcessPageTable& page_table, VAddr start,
std::size_t size) const {
const std::size_t padding_size{page_table.GetNumGuardPages() * Kernel::PageSize};
const auto start_info{page_table.QueryInfo(start - 1)};
Kernel::KMemoryInfo start_info;
Kernel::Svc::PageInfo page_info;
R_ASSERT(
page_table.QueryInfo(std::addressof(start_info), std::addressof(page_info), start - 1));
if (start_info.GetState() != Kernel::KMemoryState::Free) {
return {};
@@ -298,7 +303,9 @@ public:
return {};
}
const auto end_info{page_table.QueryInfo(start + size)};
Kernel::KMemoryInfo end_info;
R_ASSERT(page_table.QueryInfo(std::addressof(end_info), std::addressof(page_info),
start + size));
if (end_info.GetState() != Kernel::KMemoryState::Free) {
return {};
@@ -307,7 +314,7 @@ public:
return (start + size + padding_size) <= (end_info.GetAddress() + end_info.GetSize());
}
Result GetAvailableMapRegion(Kernel::KPageTable& page_table, u64 size, VAddr& out_addr) {
Result GetAvailableMapRegion(Kernel::KProcessPageTable& page_table, u64 size, VAddr& out_addr) {
size = Common::AlignUp(size, Kernel::PageSize);
size += page_table.GetNumGuardPages() * Kernel::PageSize * 4;
@@ -391,12 +398,8 @@ public:
if (bss_size) {
auto block_guard = detail::ScopeExit([&] {
page_table.UnmapCodeMemory(
addr + nro_size, bss_addr, bss_size,
Kernel::KPageTable::ICacheInvalidationStrategy::InvalidateRange);
page_table.UnmapCodeMemory(
addr, nro_addr, nro_size,
Kernel::KPageTable::ICacheInvalidationStrategy::InvalidateRange);
page_table.UnmapCodeMemory(addr + nro_size, bss_addr, bss_size);
page_table.UnmapCodeMemory(addr, nro_addr, nro_size);
});
const Result result{page_table.MapCodeMemory(addr + nro_size, bss_addr, bss_size)};
@@ -578,21 +581,17 @@ public:
auto& page_table{system.ApplicationProcess()->GetPageTable()};
if (info.bss_size != 0) {
R_TRY(page_table.UnmapCodeMemory(
info.nro_address + info.text_size + info.ro_size + info.data_size, info.bss_address,
info.bss_size, Kernel::KPageTable::ICacheInvalidationStrategy::InvalidateRange));
R_TRY(page_table.UnmapCodeMemory(info.nro_address + info.text_size + info.ro_size +
info.data_size,
info.bss_address, info.bss_size));
}
R_TRY(page_table.UnmapCodeMemory(
info.nro_address + info.text_size + info.ro_size,
info.src_addr + info.text_size + info.ro_size, info.data_size,
Kernel::KPageTable::ICacheInvalidationStrategy::InvalidateRange));
R_TRY(page_table.UnmapCodeMemory(
info.nro_address + info.text_size, info.src_addr + info.text_size, info.ro_size,
Kernel::KPageTable::ICacheInvalidationStrategy::InvalidateRange));
R_TRY(page_table.UnmapCodeMemory(
info.nro_address, info.src_addr, info.text_size,
Kernel::KPageTable::ICacheInvalidationStrategy::InvalidateRange));
R_TRY(page_table.UnmapCodeMemory(info.nro_address + info.text_size + info.ro_size,
info.src_addr + info.text_size + info.ro_size,
info.data_size));
R_TRY(page_table.UnmapCodeMemory(info.nro_address + info.text_size,
info.src_addr + info.text_size, info.ro_size));
R_TRY(page_table.UnmapCodeMemory(info.nro_address, info.src_addr, info.text_size));
return ResultSuccess;
}

View File

@@ -0,0 +1,159 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <span>
#include <vector>
#include "common/concepts.h"
#include "core/hle/service/nvdrv/devices/nvdevice.h"
namespace Service::Nvidia::Devices {
struct IoctlOneArgTraits {
template <typename T, typename R, typename A, typename... B>
static A GetFirstArgImpl(R (T::*)(A, B...));
};
struct IoctlTwoArgTraits {
template <typename T, typename R, typename A, typename B, typename... C>
static A GetFirstArgImpl(R (T::*)(A, B, C...));
template <typename T, typename R, typename A, typename B, typename... C>
static B GetSecondArgImpl(R (T::*)(A, B, C...));
};
struct Null {};
// clang-format off
template <typename FixedArg, typename VarArg, typename InlInVarArg, typename InlOutVarArg, typename F>
NvResult WrapGeneric(F&& callable, std::span<const u8> input, std::span<const u8> inline_input, std::span<u8> output, std::span<u8> inline_output) {
constexpr bool HasFixedArg = !std::is_same_v<FixedArg, Null>;
constexpr bool HasVarArg = !std::is_same_v<VarArg, Null>;
constexpr bool HasInlInVarArg = !std::is_same_v<InlInVarArg, Null>;
constexpr bool HasInlOutVarArg = !std::is_same_v<InlOutVarArg, Null>;
// Declare the fixed-size input value.
FixedArg fixed{};
size_t var_offset = 0;
if constexpr (HasFixedArg) {
// Read the fixed-size input value.
var_offset = std::min(sizeof(FixedArg), input.size());
if (var_offset > 0) {
std::memcpy(&fixed, input.data(), var_offset);
}
}
// Read the variable-sized inputs.
const size_t num_var_args = HasVarArg ? ((input.size() - var_offset) / sizeof(VarArg)) : 0;
std::vector<VarArg> var_args(num_var_args);
if constexpr (HasVarArg) {
if (num_var_args > 0) {
std::memcpy(var_args.data(), input.data() + var_offset, num_var_args * sizeof(VarArg));
}
}
const size_t num_inl_in_var_args = HasInlInVarArg ? (inline_input.size() / sizeof(InlInVarArg)) : 0;
std::vector<InlInVarArg> inl_in_var_args(num_inl_in_var_args);
if constexpr (HasInlInVarArg) {
if (num_inl_in_var_args > 0) {
std::memcpy(inl_in_var_args.data(), inline_input.data(), num_inl_in_var_args * sizeof(InlInVarArg));
}
}
// Construct inline output data.
const size_t num_inl_out_var_args = HasInlOutVarArg ? (inline_output.size() / sizeof(InlOutVarArg)) : 0;
std::vector<InlOutVarArg> inl_out_var_args(num_inl_out_var_args);
// Perform the call.
NvResult result = callable(fixed, var_args, inl_in_var_args, inl_out_var_args);
// Copy outputs.
if constexpr (HasFixedArg) {
if (output.size() > 0) {
std::memcpy(output.data(), &fixed, std::min(output.size(), sizeof(FixedArg)));
}
}
if constexpr (HasVarArg) {
if (num_var_args > 0 && output.size() > var_offset) {
const size_t max_var_size = output.size() - var_offset;
std::memcpy(output.data() + var_offset, var_args.data(), std::min(max_var_size, num_var_args * sizeof(VarArg)));
}
}
// Copy inline outputs.
if constexpr (HasInlOutVarArg) {
if (num_inl_out_var_args > 0) {
std::memcpy(inline_output.data(), inl_out_var_args.data(), num_inl_out_var_args * sizeof(InlOutVarArg));
}
}
// We're done.
return result;
}
template <typename Self, typename F, typename... Rest>
NvResult WrapFixed(Self* self, F&& callable, std::span<const u8> input, std::span<u8> output, Rest&&... rest) {
using FixedArg = typename std::remove_reference_t<decltype(IoctlOneArgTraits::GetFirstArgImpl(callable))>;
const auto Callable = [&](auto& fixed, auto& var, auto& inl_in, auto& inl_out) -> NvResult {
return (self->*callable)(fixed, std::forward<Rest>(rest)...);
};
return WrapGeneric<FixedArg, Null, Null, Null>(std::move(Callable), input, {}, output, {});
}
template <typename Self, typename F, typename... Rest>
NvResult WrapFixedInlOut(Self* self, F&& callable, std::span<const u8> input, std::span<u8> output, std::span<u8> inline_output, Rest&&... rest) {
using FixedArg = typename std::remove_reference_t<decltype(IoctlTwoArgTraits::GetFirstArgImpl(callable))>;
using InlOutVarArg = typename std::remove_reference_t<decltype(IoctlTwoArgTraits::GetSecondArgImpl(callable))>::value_type;
const auto Callable = [&](auto& fixed, auto& var, auto& inl_in, auto& inl_out) -> NvResult {
return (self->*callable)(fixed, inl_out, std::forward<Rest>(rest)...);
};
return WrapGeneric<FixedArg, Null, Null, InlOutVarArg>(std::move(Callable), input, {}, output, inline_output);
}
template <typename Self, typename F, typename... Rest>
NvResult WrapVariable(Self* self, F&& callable, std::span<const u8> input, std::span<u8> output, Rest&&... rest) {
using VarArg = typename std::remove_reference_t<decltype(IoctlOneArgTraits::GetFirstArgImpl(callable))>::value_type;
const auto Callable = [&](auto& fixed, auto& var, auto& inl_in, auto& inl_out) -> NvResult {
return (self->*callable)(var, std::forward<Rest>(rest)...);
};
return WrapGeneric<Null, VarArg, Null, Null>(std::move(Callable), input, {}, output, {});
}
template <typename Self, typename F, typename... Rest>
NvResult WrapFixedVariable(Self* self, F&& callable, std::span<const u8> input, std::span<u8> output, Rest&&... rest) {
using FixedArg = typename std::remove_reference_t<decltype(IoctlTwoArgTraits::GetFirstArgImpl(callable))>;
using VarArg = typename std::remove_reference_t<decltype(IoctlTwoArgTraits::GetSecondArgImpl(callable))>::value_type;
const auto Callable = [&](auto& fixed, auto& var, auto& inl_in, auto& inl_out) -> NvResult {
return (self->*callable)(fixed, var, std::forward<Rest>(rest)...);
};
return WrapGeneric<FixedArg, VarArg, Null, Null>(std::move(Callable), input, {}, output, {});
}
template <typename Self, typename F, typename... Rest>
NvResult WrapFixedInlIn(Self* self, F&& callable, std::span<const u8> input, std::span<const u8> inline_input, std::span<u8> output, Rest&&... rest) {
using FixedArg = typename std::remove_reference_t<decltype(IoctlTwoArgTraits::GetFirstArgImpl(callable))>;
using InlInVarArg = typename std::remove_reference_t<decltype(IoctlTwoArgTraits::GetSecondArgImpl(callable))>::value_type;
const auto Callable = [&](auto& fixed, auto& var, auto& inl_in, auto& inl_out) -> NvResult {
return (self->*callable)(fixed, inl_in, std::forward<Rest>(rest)...);
};
return WrapGeneric<FixedArg, Null, InlInVarArg, Null>(std::move(Callable), input, inline_input, output, {});
}
// clang-format on
} // namespace Service::Nvidia::Devices

View File

@@ -11,6 +11,7 @@
#include "core/core.h"
#include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/core/nvmap.h"
#include "core/hle/service/nvdrv/devices/ioctl_serialization.h"
#include "core/hle/service/nvdrv/devices/nvhost_as_gpu.h"
#include "core/hle/service/nvdrv/devices/nvhost_gpu.h"
#include "core/hle/service/nvdrv/nvdrv.h"
@@ -33,21 +34,21 @@ NvResult nvhost_as_gpu::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> i
case 'A':
switch (command.cmd) {
case 0x1:
return BindChannel(input, output);
return WrapFixed(this, &nvhost_as_gpu::BindChannel, input, output);
case 0x2:
return AllocateSpace(input, output);
return WrapFixed(this, &nvhost_as_gpu::AllocateSpace, input, output);
case 0x3:
return FreeSpace(input, output);
return WrapFixed(this, &nvhost_as_gpu::FreeSpace, input, output);
case 0x5:
return UnmapBuffer(input, output);
return WrapFixed(this, &nvhost_as_gpu::UnmapBuffer, input, output);
case 0x6:
return MapBufferEx(input, output);
return WrapFixed(this, &nvhost_as_gpu::MapBufferEx, input, output);
case 0x8:
return GetVARegions(input, output);
return WrapFixed(this, &nvhost_as_gpu::GetVARegions1, input, output);
case 0x9:
return AllocAsEx(input, output);
return WrapFixed(this, &nvhost_as_gpu::AllocAsEx, input, output);
case 0x14:
return Remap(input, output);
return WrapVariable(this, &nvhost_as_gpu::Remap, input, output);
default:
break;
}
@@ -72,7 +73,8 @@ NvResult nvhost_as_gpu::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> i
case 'A':
switch (command.cmd) {
case 0x8:
return GetVARegions(input, output, inline_output);
return WrapFixedInlOut(this, &nvhost_as_gpu::GetVARegions3, input, output,
inline_output);
default:
break;
}
@@ -87,10 +89,7 @@ NvResult nvhost_as_gpu::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> i
void nvhost_as_gpu::OnOpen(DeviceFD fd) {}
void nvhost_as_gpu::OnClose(DeviceFD fd) {}
NvResult nvhost_as_gpu::AllocAsEx(std::span<const u8> input, std::span<u8> output) {
IoctlAllocAsEx params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_as_gpu::AllocAsEx(IoctlAllocAsEx& params) {
LOG_DEBUG(Service_NVDRV, "called, big_page_size=0x{:X}", params.big_page_size);
std::scoped_lock lock(mutex);
@@ -141,10 +140,7 @@ NvResult nvhost_as_gpu::AllocAsEx(std::span<const u8> input, std::span<u8> outpu
return NvResult::Success;
}
NvResult nvhost_as_gpu::AllocateSpace(std::span<const u8> input, std::span<u8> output) {
IoctlAllocSpace params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_as_gpu::AllocateSpace(IoctlAllocSpace& params) {
LOG_DEBUG(Service_NVDRV, "called, pages={:X}, page_size={:X}, flags={:X}", params.pages,
params.page_size, params.flags);
@@ -194,7 +190,6 @@ NvResult nvhost_as_gpu::AllocateSpace(std::span<const u8> input, std::span<u8> o
.big_pages = params.page_size != VM::YUZU_PAGESIZE,
};
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
@@ -222,10 +217,7 @@ void nvhost_as_gpu::FreeMappingLocked(u64 offset) {
mapping_map.erase(offset);
}
NvResult nvhost_as_gpu::FreeSpace(std::span<const u8> input, std::span<u8> output) {
IoctlFreeSpace params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_as_gpu::FreeSpace(IoctlFreeSpace& params) {
LOG_DEBUG(Service_NVDRV, "called, offset={:X}, pages={:X}, page_size={:X}", params.offset,
params.pages, params.page_size);
@@ -264,18 +256,11 @@ NvResult nvhost_as_gpu::FreeSpace(std::span<const u8> input, std::span<u8> outpu
return NvResult::BadValue;
}
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_as_gpu::Remap(std::span<const u8> input, std::span<u8> output) {
const auto num_entries = input.size() / sizeof(IoctlRemapEntry);
LOG_DEBUG(Service_NVDRV, "called, num_entries=0x{:X}", num_entries);
std::scoped_lock lock(mutex);
entries.resize_destructive(num_entries);
std::memcpy(entries.data(), input.data(), input.size());
NvResult nvhost_as_gpu::Remap(std::span<IoctlRemapEntry> entries) {
LOG_DEBUG(Service_NVDRV, "called, num_entries=0x{:X}", entries.size());
if (!vm.initialised) {
return NvResult::BadValue;
@@ -317,14 +302,10 @@ NvResult nvhost_as_gpu::Remap(std::span<const u8> input, std::span<u8> output) {
}
}
std::memcpy(output.data(), entries.data(), output.size());
return NvResult::Success;
}
NvResult nvhost_as_gpu::MapBufferEx(std::span<const u8> input, std::span<u8> output) {
IoctlMapBufferEx params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_as_gpu::MapBufferEx(IoctlMapBufferEx& params) {
LOG_DEBUG(Service_NVDRV,
"called, flags={:X}, nvmap_handle={:X}, buffer_offset={}, mapping_size={}"
", offset={}",
@@ -421,14 +402,10 @@ NvResult nvhost_as_gpu::MapBufferEx(std::span<const u8> input, std::span<u8> out
mapping_map[params.offset] = mapping;
}
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_as_gpu::UnmapBuffer(std::span<const u8> input, std::span<u8> output) {
IoctlUnmapBuffer params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_as_gpu::UnmapBuffer(IoctlUnmapBuffer& params) {
LOG_DEBUG(Service_NVDRV, "called, offset=0x{:X}", params.offset);
std::scoped_lock lock(mutex);
@@ -464,9 +441,7 @@ NvResult nvhost_as_gpu::UnmapBuffer(std::span<const u8> input, std::span<u8> out
return NvResult::Success;
}
NvResult nvhost_as_gpu::BindChannel(std::span<const u8> input, std::span<u8> output) {
IoctlBindChannel params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_as_gpu::BindChannel(IoctlBindChannel& params) {
LOG_DEBUG(Service_NVDRV, "called, fd={:X}", params.fd);
auto gpu_channel_device = module.GetDevice<nvhost_gpu>(params.fd);
@@ -493,10 +468,7 @@ void nvhost_as_gpu::GetVARegionsImpl(IoctlGetVaRegions& params) {
};
}
NvResult nvhost_as_gpu::GetVARegions(std::span<const u8> input, std::span<u8> output) {
IoctlGetVaRegions params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_as_gpu::GetVARegions1(IoctlGetVaRegions& params) {
LOG_DEBUG(Service_NVDRV, "called, buf_addr={:X}, buf_size={:X}", params.buf_addr,
params.buf_size);
@@ -508,15 +480,10 @@ NvResult nvhost_as_gpu::GetVARegions(std::span<const u8> input, std::span<u8> ou
GetVARegionsImpl(params);
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_as_gpu::GetVARegions(std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) {
IoctlGetVaRegions params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_as_gpu::GetVARegions3(IoctlGetVaRegions& params, std::span<VaRegion> regions) {
LOG_DEBUG(Service_NVDRV, "called, buf_addr={:X}, buf_size={:X}", params.buf_addr,
params.buf_size);
@@ -528,9 +495,10 @@ NvResult nvhost_as_gpu::GetVARegions(std::span<const u8> input, std::span<u8> ou
GetVARegionsImpl(params);
std::memcpy(output.data(), &params, output.size());
std::memcpy(inline_output.data(), &params.regions[0], sizeof(VaRegion));
std::memcpy(inline_output.data() + sizeof(VaRegion), &params.regions[1], sizeof(VaRegion));
const size_t num_regions = std::min(params.regions.size(), regions.size());
for (size_t i = 0; i < num_regions; i++) {
regions[i] = params.regions[i];
}
return NvResult::Success;
}

View File

@@ -139,18 +139,17 @@ private:
static_assert(sizeof(IoctlGetVaRegions) == 16 + sizeof(VaRegion) * 2,
"IoctlGetVaRegions is incorrect size");
NvResult AllocAsEx(std::span<const u8> input, std::span<u8> output);
NvResult AllocateSpace(std::span<const u8> input, std::span<u8> output);
NvResult Remap(std::span<const u8> input, std::span<u8> output);
NvResult MapBufferEx(std::span<const u8> input, std::span<u8> output);
NvResult UnmapBuffer(std::span<const u8> input, std::span<u8> output);
NvResult FreeSpace(std::span<const u8> input, std::span<u8> output);
NvResult BindChannel(std::span<const u8> input, std::span<u8> output);
NvResult AllocAsEx(IoctlAllocAsEx& params);
NvResult AllocateSpace(IoctlAllocSpace& params);
NvResult Remap(std::span<IoctlRemapEntry> params);
NvResult MapBufferEx(IoctlMapBufferEx& params);
NvResult UnmapBuffer(IoctlUnmapBuffer& params);
NvResult FreeSpace(IoctlFreeSpace& params);
NvResult BindChannel(IoctlBindChannel& params);
void GetVARegionsImpl(IoctlGetVaRegions& params);
NvResult GetVARegions(std::span<const u8> input, std::span<u8> output);
NvResult GetVARegions(std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output);
NvResult GetVARegions1(IoctlGetVaRegions& params);
NvResult GetVARegions3(IoctlGetVaRegions& params, std::span<VaRegion> regions);
void FreeMappingLocked(u64 offset);
@@ -213,7 +212,6 @@ private:
bool initialised{};
} vm;
std::shared_ptr<Tegra::MemoryManager> gmmu;
Common::ScratchBuffer<IoctlRemapEntry> entries;
// s32 channel{};
// u32 big_page_size{VM::DEFAULT_BIG_PAGE_SIZE};

View File

@@ -14,6 +14,7 @@
#include "core/hle/kernel/k_event.h"
#include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/core/syncpoint_manager.h"
#include "core/hle/service/nvdrv/devices/ioctl_serialization.h"
#include "core/hle/service/nvdrv/devices/nvhost_ctrl.h"
#include "video_core/gpu.h"
#include "video_core/host1x/host1x.h"
@@ -40,19 +41,19 @@ NvResult nvhost_ctrl::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> inp
case 0x0:
switch (command.cmd) {
case 0x1b:
return NvOsGetConfigU32(input, output);
return WrapFixed(this, &nvhost_ctrl::NvOsGetConfigU32, input, output);
case 0x1c:
return IocCtrlClearEventWait(input, output);
return WrapFixed(this, &nvhost_ctrl::IocCtrlClearEventWait, input, output);
case 0x1d:
return IocCtrlEventWait(input, output, true);
return WrapFixed(this, &nvhost_ctrl::IocCtrlEventWait, input, output, true);
case 0x1e:
return IocCtrlEventWait(input, output, false);
return WrapFixed(this, &nvhost_ctrl::IocCtrlEventWait, input, output, false);
case 0x1f:
return IocCtrlEventRegister(input, output);
return WrapFixed(this, &nvhost_ctrl::IocCtrlEventRegister, input, output);
case 0x20:
return IocCtrlEventUnregister(input, output);
return WrapFixed(this, &nvhost_ctrl::IocCtrlEventUnregister, input, output);
case 0x21:
return IocCtrlEventUnregisterBatch(input, output);
return WrapFixed(this, &nvhost_ctrl::IocCtrlEventUnregisterBatch, input, output);
}
break;
default:
@@ -79,25 +80,19 @@ void nvhost_ctrl::OnOpen(DeviceFD fd) {}
void nvhost_ctrl::OnClose(DeviceFD fd) {}
NvResult nvhost_ctrl::NvOsGetConfigU32(std::span<const u8> input, std::span<u8> output) {
IocGetConfigParams params{};
std::memcpy(&params, input.data(), sizeof(params));
NvResult nvhost_ctrl::NvOsGetConfigU32(IocGetConfigParams& params) {
LOG_TRACE(Service_NVDRV, "called, setting={}!{}", params.domain_str.data(),
params.param_str.data());
return NvResult::ConfigVarNotFound; // Returns error on production mode
}
NvResult nvhost_ctrl::IocCtrlEventWait(std::span<const u8> input, std::span<u8> output,
bool is_allocation) {
IocCtrlEventWaitParams params{};
std::memcpy(&params, input.data(), sizeof(params));
NvResult nvhost_ctrl::IocCtrlEventWait(IocCtrlEventWaitParams& params, bool is_allocation) {
LOG_DEBUG(Service_NVDRV, "syncpt_id={}, threshold={}, timeout={}, is_allocation={}",
params.fence.id, params.fence.value, params.timeout, is_allocation);
bool must_unmark_fail = !is_allocation;
const u32 event_id = params.value.raw;
SCOPE_EXIT({
std::memcpy(output.data(), &params, sizeof(params));
if (must_unmark_fail) {
events[event_id].fails = 0;
}
@@ -231,9 +226,7 @@ NvResult nvhost_ctrl::FreeEvent(u32 slot) {
return NvResult::Success;
}
NvResult nvhost_ctrl::IocCtrlEventRegister(std::span<const u8> input, std::span<u8> output) {
IocCtrlEventRegisterParams params{};
std::memcpy(&params, input.data(), sizeof(params));
NvResult nvhost_ctrl::IocCtrlEventRegister(IocCtrlEventRegisterParams& params) {
const u32 event_id = params.user_event_id;
LOG_DEBUG(Service_NVDRV, " called, user_event_id: {:X}", event_id);
if (event_id >= MaxNvEvents) {
@@ -252,9 +245,7 @@ NvResult nvhost_ctrl::IocCtrlEventRegister(std::span<const u8> input, std::span<
return NvResult::Success;
}
NvResult nvhost_ctrl::IocCtrlEventUnregister(std::span<const u8> input, std::span<u8> output) {
IocCtrlEventUnregisterParams params{};
std::memcpy(&params, input.data(), sizeof(params));
NvResult nvhost_ctrl::IocCtrlEventUnregister(IocCtrlEventUnregisterParams& params) {
const u32 event_id = params.user_event_id & 0x00FF;
LOG_DEBUG(Service_NVDRV, " called, user_event_id: {:X}", event_id);
@@ -262,9 +253,7 @@ NvResult nvhost_ctrl::IocCtrlEventUnregister(std::span<const u8> input, std::spa
return FreeEvent(event_id);
}
NvResult nvhost_ctrl::IocCtrlEventUnregisterBatch(std::span<const u8> input, std::span<u8> output) {
IocCtrlEventUnregisterBatchParams params{};
std::memcpy(&params, input.data(), sizeof(params));
NvResult nvhost_ctrl::IocCtrlEventUnregisterBatch(IocCtrlEventUnregisterBatchParams& params) {
u64 event_mask = params.user_events;
LOG_DEBUG(Service_NVDRV, " called, event_mask: {:X}", event_mask);
@@ -280,10 +269,7 @@ NvResult nvhost_ctrl::IocCtrlEventUnregisterBatch(std::span<const u8> input, std
return NvResult::Success;
}
NvResult nvhost_ctrl::IocCtrlClearEventWait(std::span<const u8> input, std::span<u8> output) {
IocCtrlEventClearParams params{};
std::memcpy(&params, input.data(), sizeof(params));
NvResult nvhost_ctrl::IocCtrlClearEventWait(IocCtrlEventClearParams& params) {
u32 event_id = params.event_id.slot;
LOG_DEBUG(Service_NVDRV, "called, event_id: {:X}", event_id);

View File

@@ -186,12 +186,12 @@ private:
static_assert(sizeof(IocCtrlEventUnregisterBatchParams) == 8,
"IocCtrlEventKill is incorrect size");
NvResult NvOsGetConfigU32(std::span<const u8> input, std::span<u8> output);
NvResult IocCtrlEventWait(std::span<const u8> input, std::span<u8> output, bool is_allocation);
NvResult IocCtrlEventRegister(std::span<const u8> input, std::span<u8> output);
NvResult IocCtrlEventUnregister(std::span<const u8> input, std::span<u8> output);
NvResult IocCtrlEventUnregisterBatch(std::span<const u8> input, std::span<u8> output);
NvResult IocCtrlClearEventWait(std::span<const u8> input, std::span<u8> output);
NvResult NvOsGetConfigU32(IocGetConfigParams& params);
NvResult IocCtrlEventRegister(IocCtrlEventRegisterParams& params);
NvResult IocCtrlEventUnregister(IocCtrlEventUnregisterParams& params);
NvResult IocCtrlEventUnregisterBatch(IocCtrlEventUnregisterBatchParams& params);
NvResult IocCtrlEventWait(IocCtrlEventWaitParams& params, bool is_allocation);
NvResult IocCtrlClearEventWait(IocCtrlEventClearParams& params);
NvResult FreeEvent(u32 slot);

View File

@@ -6,6 +6,7 @@
#include "common/logging/log.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/service/nvdrv/devices/ioctl_serialization.h"
#include "core/hle/service/nvdrv/devices/nvhost_ctrl_gpu.h"
#include "core/hle/service/nvdrv/nvdrv.h"
@@ -27,23 +28,23 @@ NvResult nvhost_ctrl_gpu::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8>
case 'G':
switch (command.cmd) {
case 0x1:
return ZCullGetCtxSize(input, output);
return WrapFixed(this, &nvhost_ctrl_gpu::ZCullGetCtxSize, input, output);
case 0x2:
return ZCullGetInfo(input, output);
return WrapFixed(this, &nvhost_ctrl_gpu::ZCullGetInfo, input, output);
case 0x3:
return ZBCSetTable(input, output);
return WrapFixed(this, &nvhost_ctrl_gpu::ZBCSetTable, input, output);
case 0x4:
return ZBCQueryTable(input, output);
return WrapFixed(this, &nvhost_ctrl_gpu::ZBCQueryTable, input, output);
case 0x5:
return GetCharacteristics(input, output);
return WrapFixed(this, &nvhost_ctrl_gpu::GetCharacteristics1, input, output);
case 0x6:
return GetTPCMasks(input, output);
return WrapFixed(this, &nvhost_ctrl_gpu::GetTPCMasks1, input, output);
case 0x7:
return FlushL2(input, output);
return WrapFixed(this, &nvhost_ctrl_gpu::FlushL2, input, output);
case 0x14:
return GetActiveSlotMask(input, output);
return WrapFixed(this, &nvhost_ctrl_gpu::GetActiveSlotMask, input, output);
case 0x1c:
return GetGpuTime(input, output);
return WrapFixed(this, &nvhost_ctrl_gpu::GetGpuTime, input, output);
default:
break;
}
@@ -65,9 +66,11 @@ NvResult nvhost_ctrl_gpu::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8>
case 'G':
switch (command.cmd) {
case 0x5:
return GetCharacteristics(input, output, inline_output);
return WrapFixedInlOut(this, &nvhost_ctrl_gpu::GetCharacteristics3, input, output,
inline_output);
case 0x6:
return GetTPCMasks(input, output, inline_output);
return WrapFixedInlOut(this, &nvhost_ctrl_gpu::GetTPCMasks3, input, output,
inline_output);
default:
break;
}
@@ -82,10 +85,8 @@ NvResult nvhost_ctrl_gpu::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8>
void nvhost_ctrl_gpu::OnOpen(DeviceFD fd) {}
void nvhost_ctrl_gpu::OnClose(DeviceFD fd) {}
NvResult nvhost_ctrl_gpu::GetCharacteristics(std::span<const u8> input, std::span<u8> output) {
NvResult nvhost_ctrl_gpu::GetCharacteristics1(IoctlCharacteristics& params) {
LOG_DEBUG(Service_NVDRV, "called");
IoctlCharacteristics params{};
std::memcpy(&params, input.data(), input.size());
params.gc.arch = 0x120;
params.gc.impl = 0xb;
params.gc.rev = 0xa1;
@@ -123,15 +124,13 @@ NvResult nvhost_ctrl_gpu::GetCharacteristics(std::span<const u8> input, std::spa
params.gc.gr_compbit_store_base_hw = 0x0;
params.gpu_characteristics_buf_size = 0xA0;
params.gpu_characteristics_buf_addr = 0xdeadbeef; // Cannot be 0 (UNUSED)
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_ctrl_gpu::GetCharacteristics(std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) {
NvResult nvhost_ctrl_gpu::GetCharacteristics3(
IoctlCharacteristics& params, std::span<IoctlGpuCharacteristics> gpu_characteristics) {
LOG_DEBUG(Service_NVDRV, "called");
IoctlCharacteristics params{};
std::memcpy(&params, input.data(), input.size());
params.gc.arch = 0x120;
params.gc.impl = 0xb;
params.gc.rev = 0xa1;
@@ -169,70 +168,47 @@ NvResult nvhost_ctrl_gpu::GetCharacteristics(std::span<const u8> input, std::spa
params.gc.gr_compbit_store_base_hw = 0x0;
params.gpu_characteristics_buf_size = 0xA0;
params.gpu_characteristics_buf_addr = 0xdeadbeef; // Cannot be 0 (UNUSED)
std::memcpy(output.data(), &params, output.size());
std::memcpy(inline_output.data(), &params.gc, inline_output.size());
if (!gpu_characteristics.empty()) {
gpu_characteristics.front() = params.gc;
}
return NvResult::Success;
}
NvResult nvhost_ctrl_gpu::GetTPCMasks(std::span<const u8> input, std::span<u8> output) {
IoctlGpuGetTpcMasksArgs params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_ctrl_gpu::GetTPCMasks1(IoctlGpuGetTpcMasksArgs& params) {
LOG_DEBUG(Service_NVDRV, "called, mask_buffer_size=0x{:X}", params.mask_buffer_size);
if (params.mask_buffer_size != 0) {
params.tcp_mask = 3;
}
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_ctrl_gpu::GetTPCMasks(std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) {
IoctlGpuGetTpcMasksArgs params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_ctrl_gpu::GetTPCMasks3(IoctlGpuGetTpcMasksArgs& params, std::span<u32> tpc_mask) {
LOG_DEBUG(Service_NVDRV, "called, mask_buffer_size=0x{:X}", params.mask_buffer_size);
if (params.mask_buffer_size != 0) {
params.tcp_mask = 3;
}
std::memcpy(output.data(), &params, output.size());
std::memcpy(inline_output.data(), &params.tcp_mask, inline_output.size());
if (!tpc_mask.empty()) {
tpc_mask.front() = params.tcp_mask;
}
return NvResult::Success;
}
NvResult nvhost_ctrl_gpu::GetActiveSlotMask(std::span<const u8> input, std::span<u8> output) {
NvResult nvhost_ctrl_gpu::GetActiveSlotMask(IoctlActiveSlotMask& params) {
LOG_DEBUG(Service_NVDRV, "called");
IoctlActiveSlotMask params{};
if (input.size() > 0) {
std::memcpy(&params, input.data(), input.size());
}
params.slot = 0x07;
params.mask = 0x01;
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_ctrl_gpu::ZCullGetCtxSize(std::span<const u8> input, std::span<u8> output) {
NvResult nvhost_ctrl_gpu::ZCullGetCtxSize(IoctlZcullGetCtxSize& params) {
LOG_DEBUG(Service_NVDRV, "called");
IoctlZcullGetCtxSize params{};
if (input.size() > 0) {
std::memcpy(&params, input.data(), input.size());
}
params.size = 0x1;
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_ctrl_gpu::ZCullGetInfo(std::span<const u8> input, std::span<u8> output) {
NvResult nvhost_ctrl_gpu::ZCullGetInfo(IoctlNvgpuGpuZcullGetInfoArgs& params) {
LOG_DEBUG(Service_NVDRV, "called");
IoctlNvgpuGpuZcullGetInfoArgs params{};
if (input.size() > 0) {
std::memcpy(&params, input.data(), input.size());
}
params.width_align_pixels = 0x20;
params.height_align_pixels = 0x20;
params.pixel_squares_by_aliquots = 0x400;
@@ -243,53 +219,28 @@ NvResult nvhost_ctrl_gpu::ZCullGetInfo(std::span<const u8> input, std::span<u8>
params.subregion_width_align_pixels = 0x20;
params.subregion_height_align_pixels = 0x40;
params.subregion_count = 0x10;
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_ctrl_gpu::ZBCSetTable(std::span<const u8> input, std::span<u8> output) {
NvResult nvhost_ctrl_gpu::ZBCSetTable(IoctlZbcSetTable& params) {
LOG_WARNING(Service_NVDRV, "(STUBBED) called");
IoctlZbcSetTable params{};
std::memcpy(&params, input.data(), input.size());
// TODO(ogniK): What does this even actually do?
// Prevent null pointer being passed as arg 1
if (output.empty()) {
LOG_WARNING(Service_NVDRV, "Avoiding passing null pointer to memcpy");
} else {
std::memcpy(output.data(), &params, output.size());
}
return NvResult::Success;
}
NvResult nvhost_ctrl_gpu::ZBCQueryTable(std::span<const u8> input, std::span<u8> output) {
NvResult nvhost_ctrl_gpu::ZBCQueryTable(IoctlZbcQueryTable& params) {
LOG_WARNING(Service_NVDRV, "(STUBBED) called");
IoctlZbcQueryTable params{};
std::memcpy(&params, input.data(), input.size());
// TODO : To implement properly
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_ctrl_gpu::FlushL2(std::span<const u8> input, std::span<u8> output) {
NvResult nvhost_ctrl_gpu::FlushL2(IoctlFlushL2& params) {
LOG_WARNING(Service_NVDRV, "(STUBBED) called");
IoctlFlushL2 params{};
std::memcpy(&params, input.data(), input.size());
// TODO : To implement properly
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_ctrl_gpu::GetGpuTime(std::span<const u8> input, std::span<u8> output) {
NvResult nvhost_ctrl_gpu::GetGpuTime(IoctlGetGpuTime& params) {
LOG_DEBUG(Service_NVDRV, "called");
IoctlGetGpuTime params{};
std::memcpy(&params, input.data(), input.size());
params.gpu_time = static_cast<u64_le>(system.CoreTiming().GetGlobalTimeNs().count());
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}

View File

@@ -151,21 +151,20 @@ private:
};
static_assert(sizeof(IoctlGetGpuTime) == 0x10, "IoctlGetGpuTime is incorrect size");
NvResult GetCharacteristics(std::span<const u8> input, std::span<u8> output);
NvResult GetCharacteristics(std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output);
NvResult GetCharacteristics1(IoctlCharacteristics& params);
NvResult GetCharacteristics3(IoctlCharacteristics& params,
std::span<IoctlGpuCharacteristics> gpu_characteristics);
NvResult GetTPCMasks(std::span<const u8> input, std::span<u8> output);
NvResult GetTPCMasks(std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output);
NvResult GetTPCMasks1(IoctlGpuGetTpcMasksArgs& params);
NvResult GetTPCMasks3(IoctlGpuGetTpcMasksArgs& params, std::span<u32> tpc_mask);
NvResult GetActiveSlotMask(std::span<const u8> input, std::span<u8> output);
NvResult ZCullGetCtxSize(std::span<const u8> input, std::span<u8> output);
NvResult ZCullGetInfo(std::span<const u8> input, std::span<u8> output);
NvResult ZBCSetTable(std::span<const u8> input, std::span<u8> output);
NvResult ZBCQueryTable(std::span<const u8> input, std::span<u8> output);
NvResult FlushL2(std::span<const u8> input, std::span<u8> output);
NvResult GetGpuTime(std::span<const u8> input, std::span<u8> output);
NvResult GetActiveSlotMask(IoctlActiveSlotMask& params);
NvResult ZCullGetCtxSize(IoctlZcullGetCtxSize& params);
NvResult ZCullGetInfo(IoctlNvgpuGpuZcullGetInfoArgs& params);
NvResult ZBCSetTable(IoctlZbcSetTable& params);
NvResult ZBCQueryTable(IoctlZbcQueryTable& params);
NvResult FlushL2(IoctlFlushL2& params);
NvResult GetGpuTime(IoctlGetGpuTime& params);
EventInterface& events_interface;

View File

@@ -8,6 +8,7 @@
#include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/core/nvmap.h"
#include "core/hle/service/nvdrv/core/syncpoint_manager.h"
#include "core/hle/service/nvdrv/devices/ioctl_serialization.h"
#include "core/hle/service/nvdrv/devices/nvhost_gpu.h"
#include "core/hle/service/nvdrv/nvdrv.h"
#include "core/memory.h"
@@ -52,7 +53,7 @@ NvResult nvhost_gpu::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> inpu
case 0x0:
switch (command.cmd) {
case 0x3:
return GetWaitbase(input, output);
return WrapFixed(this, &nvhost_gpu::GetWaitbase, input, output);
default:
break;
}
@@ -60,25 +61,25 @@ NvResult nvhost_gpu::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> inpu
case 'H':
switch (command.cmd) {
case 0x1:
return SetNVMAPfd(input, output);
return WrapFixed(this, &nvhost_gpu::SetNVMAPfd, input, output);
case 0x3:
return ChannelSetTimeout(input, output);
return WrapFixed(this, &nvhost_gpu::ChannelSetTimeout, input, output);
case 0x8:
return SubmitGPFIFOBase(input, output, false);
return WrapFixedVariable(this, &nvhost_gpu::SubmitGPFIFOBase1, input, output, false);
case 0x9:
return AllocateObjectContext(input, output);
return WrapFixed(this, &nvhost_gpu::AllocateObjectContext, input, output);
case 0xb:
return ZCullBind(input, output);
return WrapFixed(this, &nvhost_gpu::ZCullBind, input, output);
case 0xc:
return SetErrorNotifier(input, output);
return WrapFixed(this, &nvhost_gpu::SetErrorNotifier, input, output);
case 0xd:
return SetChannelPriority(input, output);
return WrapFixed(this, &nvhost_gpu::SetChannelPriority, input, output);
case 0x1a:
return AllocGPFIFOEx2(input, output);
return WrapFixed(this, &nvhost_gpu::AllocGPFIFOEx2, input, output);
case 0x1b:
return SubmitGPFIFOBase(input, output, true);
return WrapFixedVariable(this, &nvhost_gpu::SubmitGPFIFOBase1, input, output, true);
case 0x1d:
return ChannelSetTimeslice(input, output);
return WrapFixed(this, &nvhost_gpu::ChannelSetTimeslice, input, output);
default:
break;
}
@@ -86,9 +87,9 @@ NvResult nvhost_gpu::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> inpu
case 'G':
switch (command.cmd) {
case 0x14:
return SetClientData(input, output);
return WrapFixed(this, &nvhost_gpu::SetClientData, input, output);
case 0x15:
return GetClientData(input, output);
return WrapFixed(this, &nvhost_gpu::GetClientData, input, output);
default:
break;
}
@@ -104,7 +105,8 @@ NvResult nvhost_gpu::Ioctl2(DeviceFD fd, Ioctl command, std::span<const u8> inpu
case 'H':
switch (command.cmd) {
case 0x1b:
return SubmitGPFIFOBase(input, inline_input, output);
return WrapFixedInlIn(this, &nvhost_gpu::SubmitGPFIFOBase2, input, inline_input,
output);
}
break;
}
@@ -121,63 +123,45 @@ NvResult nvhost_gpu::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> inpu
void nvhost_gpu::OnOpen(DeviceFD fd) {}
void nvhost_gpu::OnClose(DeviceFD fd) {}
NvResult nvhost_gpu::SetNVMAPfd(std::span<const u8> input, std::span<u8> output) {
IoctlSetNvmapFD params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_gpu::SetNVMAPfd(IoctlSetNvmapFD& params) {
LOG_DEBUG(Service_NVDRV, "called, fd={}", params.nvmap_fd);
nvmap_fd = params.nvmap_fd;
return NvResult::Success;
}
NvResult nvhost_gpu::SetClientData(std::span<const u8> input, std::span<u8> output) {
NvResult nvhost_gpu::SetClientData(IoctlClientData& params) {
LOG_DEBUG(Service_NVDRV, "called");
IoctlClientData params{};
std::memcpy(&params, input.data(), input.size());
user_data = params.data;
return NvResult::Success;
}
NvResult nvhost_gpu::GetClientData(std::span<const u8> input, std::span<u8> output) {
NvResult nvhost_gpu::GetClientData(IoctlClientData& params) {
LOG_DEBUG(Service_NVDRV, "called");
IoctlClientData params{};
std::memcpy(&params, input.data(), input.size());
params.data = user_data;
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_gpu::ZCullBind(std::span<const u8> input, std::span<u8> output) {
std::memcpy(&zcull_params, input.data(), input.size());
NvResult nvhost_gpu::ZCullBind(IoctlZCullBind& params) {
zcull_params = params;
LOG_DEBUG(Service_NVDRV, "called, gpu_va={:X}, mode={:X}", zcull_params.gpu_va,
zcull_params.mode);
std::memcpy(output.data(), &zcull_params, output.size());
return NvResult::Success;
}
NvResult nvhost_gpu::SetErrorNotifier(std::span<const u8> input, std::span<u8> output) {
IoctlSetErrorNotifier params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_gpu::SetErrorNotifier(IoctlSetErrorNotifier& params) {
LOG_WARNING(Service_NVDRV, "(STUBBED) called, offset={:X}, size={:X}, mem={:X}", params.offset,
params.size, params.mem);
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_gpu::SetChannelPriority(std::span<const u8> input, std::span<u8> output) {
std::memcpy(&channel_priority, input.data(), input.size());
NvResult nvhost_gpu::SetChannelPriority(IoctlChannelSetPriority& params) {
channel_priority = params.priority;
LOG_DEBUG(Service_NVDRV, "(STUBBED) called, priority={:X}", channel_priority);
return NvResult::Success;
}
NvResult nvhost_gpu::AllocGPFIFOEx2(std::span<const u8> input, std::span<u8> output) {
IoctlAllocGpfifoEx2 params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_gpu::AllocGPFIFOEx2(IoctlAllocGpfifoEx2& params) {
LOG_WARNING(Service_NVDRV,
"(STUBBED) called, num_entries={:X}, flags={:X}, unk0={:X}, "
"unk1={:X}, unk2={:X}, unk3={:X}",
@@ -193,18 +177,14 @@ NvResult nvhost_gpu::AllocGPFIFOEx2(std::span<const u8> input, std::span<u8> out
params.fence_out = syncpoint_manager.GetSyncpointFence(channel_syncpoint);
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_gpu::AllocateObjectContext(std::span<const u8> input, std::span<u8> output) {
IoctlAllocObjCtx params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_gpu::AllocateObjectContext(IoctlAllocObjCtx& params) {
LOG_WARNING(Service_NVDRV, "(STUBBED) called, class_num={:X}, flags={:X}", params.class_num,
params.flags);
params.obj_id = 0x0;
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
@@ -248,8 +228,7 @@ static boost::container::small_vector<Tegra::CommandHeader, 512> BuildIncrementW
return result;
}
NvResult nvhost_gpu::SubmitGPFIFOImpl(IoctlSubmitGpfifo& params, std::span<u8> output,
Tegra::CommandList&& entries) {
NvResult nvhost_gpu::SubmitGPFIFOImpl(IoctlSubmitGpfifo& params, Tegra::CommandList&& entries) {
LOG_TRACE(Service_NVDRV, "called, gpfifo={:X}, num_entries={:X}, flags={:X}", params.address,
params.num_entries, params.flags.raw);
@@ -290,65 +269,55 @@ NvResult nvhost_gpu::SubmitGPFIFOImpl(IoctlSubmitGpfifo& params, std::span<u8> o
flags.raw = 0;
std::memcpy(output.data(), &params, sizeof(IoctlSubmitGpfifo));
return NvResult::Success;
}
NvResult nvhost_gpu::SubmitGPFIFOBase(std::span<const u8> input, std::span<u8> output,
bool kickoff) {
if (input.size() < sizeof(IoctlSubmitGpfifo)) {
NvResult nvhost_gpu::SubmitGPFIFOBase1(IoctlSubmitGpfifo& params,
std::span<Tegra::CommandListHeader> commands, bool kickoff) {
if (params.num_entries > commands.size()) {
UNIMPLEMENTED();
return NvResult::InvalidSize;
}
IoctlSubmitGpfifo params{};
std::memcpy(&params, input.data(), sizeof(IoctlSubmitGpfifo));
Tegra::CommandList entries(params.num_entries);
Tegra::CommandList entries(params.num_entries);
if (kickoff) {
system.ApplicationMemory().ReadBlock(params.address, entries.command_lists.data(),
params.num_entries * sizeof(Tegra::CommandListHeader));
} else {
std::memcpy(entries.command_lists.data(), &input[sizeof(IoctlSubmitGpfifo)],
std::memcpy(entries.command_lists.data(), commands.data(),
params.num_entries * sizeof(Tegra::CommandListHeader));
}
return SubmitGPFIFOImpl(params, output, std::move(entries));
return SubmitGPFIFOImpl(params, std::move(entries));
}
NvResult nvhost_gpu::SubmitGPFIFOBase(std::span<const u8> input, std::span<const u8> input_inline,
std::span<u8> output) {
if (input.size() < sizeof(IoctlSubmitGpfifo)) {
NvResult nvhost_gpu::SubmitGPFIFOBase2(IoctlSubmitGpfifo& params,
std::span<const Tegra::CommandListHeader> commands) {
if (params.num_entries > commands.size()) {
UNIMPLEMENTED();
return NvResult::InvalidSize;
}
IoctlSubmitGpfifo params{};
std::memcpy(&params, input.data(), sizeof(IoctlSubmitGpfifo));
Tegra::CommandList entries(params.num_entries);
std::memcpy(entries.command_lists.data(), input_inline.data(), input_inline.size());
return SubmitGPFIFOImpl(params, output, std::move(entries));
std::memcpy(entries.command_lists.data(), commands.data(),
params.num_entries * sizeof(Tegra::CommandListHeader));
return SubmitGPFIFOImpl(params, std::move(entries));
}
NvResult nvhost_gpu::GetWaitbase(std::span<const u8> input, std::span<u8> output) {
IoctlGetWaitbase params{};
std::memcpy(&params, input.data(), sizeof(IoctlGetWaitbase));
NvResult nvhost_gpu::GetWaitbase(IoctlGetWaitbase& params) {
LOG_INFO(Service_NVDRV, "called, unknown=0x{:X}", params.unknown);
params.value = 0; // Seems to be hard coded at 0
std::memcpy(output.data(), &params, output.size());
return NvResult::Success;
}
NvResult nvhost_gpu::ChannelSetTimeout(std::span<const u8> input, std::span<u8> output) {
IoctlChannelSetTimeout params{};
std::memcpy(&params, input.data(), sizeof(IoctlChannelSetTimeout));
NvResult nvhost_gpu::ChannelSetTimeout(IoctlChannelSetTimeout& params) {
LOG_INFO(Service_NVDRV, "called, timeout=0x{:X}", params.timeout);
return NvResult::Success;
}
NvResult nvhost_gpu::ChannelSetTimeslice(std::span<const u8> input, std::span<u8> output) {
IoctlSetTimeslice params{};
std::memcpy(&params, input.data(), sizeof(IoctlSetTimeslice));
NvResult nvhost_gpu::ChannelSetTimeslice(IoctlSetTimeslice& params) {
LOG_INFO(Service_NVDRV, "called, timeslice=0x{:X}", params.timeslice);
channel_timeslice = params.timeslice;

View File

@@ -186,23 +186,24 @@ private:
u32_le channel_priority{};
u32_le channel_timeslice{};
NvResult SetNVMAPfd(std::span<const u8> input, std::span<u8> output);
NvResult SetClientData(std::span<const u8> input, std::span<u8> output);
NvResult GetClientData(std::span<const u8> input, std::span<u8> output);
NvResult ZCullBind(std::span<const u8> input, std::span<u8> output);
NvResult SetErrorNotifier(std::span<const u8> input, std::span<u8> output);
NvResult SetChannelPriority(std::span<const u8> input, std::span<u8> output);
NvResult AllocGPFIFOEx2(std::span<const u8> input, std::span<u8> output);
NvResult AllocateObjectContext(std::span<const u8> input, std::span<u8> output);
NvResult SubmitGPFIFOImpl(IoctlSubmitGpfifo& params, std::span<u8> output,
Tegra::CommandList&& entries);
NvResult SubmitGPFIFOBase(std::span<const u8> input, std::span<u8> output,
bool kickoff = false);
NvResult SubmitGPFIFOBase(std::span<const u8> input, std::span<const u8> input_inline,
std::span<u8> output);
NvResult GetWaitbase(std::span<const u8> input, std::span<u8> output);
NvResult ChannelSetTimeout(std::span<const u8> input, std::span<u8> output);
NvResult ChannelSetTimeslice(std::span<const u8> input, std::span<u8> output);
NvResult SetNVMAPfd(IoctlSetNvmapFD& params);
NvResult SetClientData(IoctlClientData& params);
NvResult GetClientData(IoctlClientData& params);
NvResult ZCullBind(IoctlZCullBind& params);
NvResult SetErrorNotifier(IoctlSetErrorNotifier& params);
NvResult SetChannelPriority(IoctlChannelSetPriority& params);
NvResult AllocGPFIFOEx2(IoctlAllocGpfifoEx2& params);
NvResult AllocateObjectContext(IoctlAllocObjCtx& params);
NvResult SubmitGPFIFOImpl(IoctlSubmitGpfifo& params, Tegra::CommandList&& entries);
NvResult SubmitGPFIFOBase1(IoctlSubmitGpfifo& params,
std::span<Tegra::CommandListHeader> commands, bool kickoff = false);
NvResult SubmitGPFIFOBase2(IoctlSubmitGpfifo& params,
std::span<const Tegra::CommandListHeader> commands);
NvResult GetWaitbase(IoctlGetWaitbase& params);
NvResult ChannelSetTimeout(IoctlChannelSetTimeout& params);
NvResult ChannelSetTimeslice(IoctlSetTimeslice& params);
EventInterface& events_interface;
NvCore::Container& core;

View File

@@ -6,6 +6,7 @@
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/devices/ioctl_serialization.h"
#include "core/hle/service/nvdrv/devices/nvhost_nvdec.h"
#include "video_core/renderer_base.h"
@@ -25,18 +26,18 @@ NvResult nvhost_nvdec::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> in
if (!host1x_file.fd_to_id.contains(fd)) {
host1x_file.fd_to_id[fd] = host1x_file.nvdec_next_id++;
}
return Submit(fd, input, output);
return WrapFixedVariable(this, &nvhost_nvdec::Submit, input, output, fd);
}
case 0x2:
return GetSyncpoint(input, output);
return WrapFixed(this, &nvhost_nvdec::GetSyncpoint, input, output);
case 0x3:
return GetWaitbase(input, output);
return WrapFixed(this, &nvhost_nvdec::GetWaitbase, input, output);
case 0x7:
return SetSubmitTimeout(input, output);
return WrapFixed(this, &nvhost_nvdec::SetSubmitTimeout, input, output);
case 0x9:
return MapBuffer(input, output);
return WrapFixedVariable(this, &nvhost_nvdec::MapBuffer, input, output);
case 0xa:
return UnmapBuffer(input, output);
return WrapFixedVariable(this, &nvhost_nvdec::UnmapBuffer, input, output);
default:
break;
}
@@ -44,7 +45,7 @@ NvResult nvhost_nvdec::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> in
case 'H':
switch (command.cmd) {
case 0x1:
return SetNVMAPfd(input);
return WrapFixed(this, &nvhost_nvdec::SetNVMAPfd, input, output);
default:
break;
}

View File

@@ -29,6 +29,9 @@ std::size_t SliceVectors(std::span<const u8> input, std::vector<T>& dst, std::si
return 0;
}
const size_t bytes_copied = count * sizeof(T);
if (input.size() < offset + bytes_copied) {
return 0;
}
std::memcpy(dst.data(), input.data() + offset, bytes_copied);
return bytes_copied;
}
@@ -41,6 +44,9 @@ std::size_t WriteVectors(std::span<u8> dst, const std::vector<T>& src, std::size
return 0;
}
const size_t bytes_copied = src.size() * sizeof(T);
if (dst.size() < offset + bytes_copied) {
return 0;
}
std::memcpy(dst.data() + offset, src.data(), bytes_copied);
return bytes_copied;
}
@@ -63,18 +69,14 @@ nvhost_nvdec_common::~nvhost_nvdec_common() {
core.Host1xDeviceFile().syncpts_accumulated.push_back(channel_syncpoint);
}
NvResult nvhost_nvdec_common::SetNVMAPfd(std::span<const u8> input) {
IoctlSetNvmapFD params{};
std::memcpy(&params, input.data(), sizeof(IoctlSetNvmapFD));
NvResult nvhost_nvdec_common::SetNVMAPfd(IoctlSetNvmapFD& params) {
LOG_DEBUG(Service_NVDRV, "called, fd={}", params.nvmap_fd);
nvmap_fd = params.nvmap_fd;
return NvResult::Success;
}
NvResult nvhost_nvdec_common::Submit(DeviceFD fd, std::span<const u8> input, std::span<u8> output) {
IoctlSubmit params{};
std::memcpy(&params, input.data(), sizeof(IoctlSubmit));
NvResult nvhost_nvdec_common::Submit(IoctlSubmit& params, std::span<u8> data, DeviceFD fd) {
LOG_DEBUG(Service_NVDRV, "called NVDEC Submit, cmd_buffer_count={}", params.cmd_buffer_count);
// Instantiate param buffers
@@ -85,12 +87,12 @@ NvResult nvhost_nvdec_common::Submit(DeviceFD fd, std::span<const u8> input, std
std::vector<u32> fence_thresholds(params.fence_count);
// Slice input into their respective buffers
std::size_t offset = sizeof(IoctlSubmit);
offset += SliceVectors(input, command_buffers, params.cmd_buffer_count, offset);
offset += SliceVectors(input, relocs, params.relocation_count, offset);
offset += SliceVectors(input, reloc_shifts, params.relocation_count, offset);
offset += SliceVectors(input, syncpt_increments, params.syncpoint_count, offset);
offset += SliceVectors(input, fence_thresholds, params.fence_count, offset);
std::size_t offset = 0;
offset += SliceVectors(data, command_buffers, params.cmd_buffer_count, offset);
offset += SliceVectors(data, relocs, params.relocation_count, offset);
offset += SliceVectors(data, reloc_shifts, params.relocation_count, offset);
offset += SliceVectors(data, syncpt_increments, params.syncpoint_count, offset);
offset += SliceVectors(data, fence_thresholds, params.fence_count, offset);
auto& gpu = system.GPU();
if (gpu.UseNvdec()) {
@@ -108,72 +110,51 @@ NvResult nvhost_nvdec_common::Submit(DeviceFD fd, std::span<const u8> input, std
cmdlist.size() * sizeof(u32));
gpu.PushCommandBuffer(core.Host1xDeviceFile().fd_to_id[fd], cmdlist);
}
std::memcpy(output.data(), &params, sizeof(IoctlSubmit));
// Some games expect command_buffers to be written back
offset = sizeof(IoctlSubmit);
offset += WriteVectors(output, command_buffers, offset);
offset += WriteVectors(output, relocs, offset);
offset += WriteVectors(output, reloc_shifts, offset);
offset += WriteVectors(output, syncpt_increments, offset);
offset += WriteVectors(output, fence_thresholds, offset);
offset = 0;
offset += WriteVectors(data, command_buffers, offset);
offset += WriteVectors(data, relocs, offset);
offset += WriteVectors(data, reloc_shifts, offset);
offset += WriteVectors(data, syncpt_increments, offset);
offset += WriteVectors(data, fence_thresholds, offset);
return NvResult::Success;
}
NvResult nvhost_nvdec_common::GetSyncpoint(std::span<const u8> input, std::span<u8> output) {
IoctlGetSyncpoint params{};
std::memcpy(&params, input.data(), sizeof(IoctlGetSyncpoint));
NvResult nvhost_nvdec_common::GetSyncpoint(IoctlGetSyncpoint& params) {
LOG_DEBUG(Service_NVDRV, "called GetSyncpoint, id={}", params.param);
// const u32 id{NvCore::SyncpointManager::channel_syncpoints[static_cast<u32>(channel_type)]};
params.value = channel_syncpoint;
std::memcpy(output.data(), &params, sizeof(IoctlGetSyncpoint));
return NvResult::Success;
}
NvResult nvhost_nvdec_common::GetWaitbase(std::span<const u8> input, std::span<u8> output) {
IoctlGetWaitbase params{};
NvResult nvhost_nvdec_common::GetWaitbase(IoctlGetWaitbase& params) {
LOG_CRITICAL(Service_NVDRV, "called WAITBASE");
std::memcpy(&params, input.data(), sizeof(IoctlGetWaitbase));
params.value = 0; // Seems to be hard coded at 0
std::memcpy(output.data(), &params, sizeof(IoctlGetWaitbase));
return NvResult::Success;
}
NvResult nvhost_nvdec_common::MapBuffer(std::span<const u8> input, std::span<u8> output) {
IoctlMapBuffer params{};
std::memcpy(&params, input.data(), sizeof(IoctlMapBuffer));
std::vector<MapBufferEntry> cmd_buffer_handles(params.num_entries);
SliceVectors(input, cmd_buffer_handles, params.num_entries, sizeof(IoctlMapBuffer));
for (auto& cmd_buffer : cmd_buffer_handles) {
cmd_buffer.map_address = nvmap.PinHandle(cmd_buffer.map_handle);
}
std::memcpy(output.data(), &params, sizeof(IoctlMapBuffer));
std::memcpy(output.data() + sizeof(IoctlMapBuffer), cmd_buffer_handles.data(),
cmd_buffer_handles.size() * sizeof(MapBufferEntry));
return NvResult::Success;
}
NvResult nvhost_nvdec_common::UnmapBuffer(std::span<const u8> input, std::span<u8> output) {
IoctlMapBuffer params{};
std::memcpy(&params, input.data(), sizeof(IoctlMapBuffer));
std::vector<MapBufferEntry> cmd_buffer_handles(params.num_entries);
SliceVectors(input, cmd_buffer_handles, params.num_entries, sizeof(IoctlMapBuffer));
for (auto& cmd_buffer : cmd_buffer_handles) {
nvmap.UnpinHandle(cmd_buffer.map_handle);
NvResult nvhost_nvdec_common::MapBuffer(IoctlMapBuffer& params, std::span<MapBufferEntry> entries) {
const size_t num_entries = std::min(params.num_entries, static_cast<u32>(entries.size()));
for (size_t i = 0; i < num_entries; i++) {
entries[i].map_address = nvmap.PinHandle(entries[i].map_handle);
}
std::memset(output.data(), 0, output.size());
return NvResult::Success;
}
NvResult nvhost_nvdec_common::SetSubmitTimeout(std::span<const u8> input, std::span<u8> output) {
std::memcpy(&submit_timeout, input.data(), input.size());
NvResult nvhost_nvdec_common::UnmapBuffer(IoctlMapBuffer& params,
std::span<MapBufferEntry> entries) {
const size_t num_entries = std::min(params.num_entries, static_cast<u32>(entries.size()));
for (size_t i = 0; i < num_entries; i++) {
nvmap.UnpinHandle(entries[i].map_handle);
entries[i] = {};
}
params = {};
return NvResult::Success;
}
NvResult nvhost_nvdec_common::SetSubmitTimeout(u32 timeout) {
LOG_WARNING(Service_NVDRV, "(STUBBED) called");
return NvResult::Success;
}

View File

@@ -107,13 +107,13 @@ protected:
static_assert(sizeof(IoctlMapBuffer) == 0x0C, "IoctlMapBuffer is incorrect size");
/// Ioctl command implementations
NvResult SetNVMAPfd(std::span<const u8> input);
NvResult Submit(DeviceFD fd, std::span<const u8> input, std::span<u8> output);
NvResult GetSyncpoint(std::span<const u8> input, std::span<u8> output);
NvResult GetWaitbase(std::span<const u8> input, std::span<u8> output);
NvResult MapBuffer(std::span<const u8> input, std::span<u8> output);
NvResult UnmapBuffer(std::span<const u8> input, std::span<u8> output);
NvResult SetSubmitTimeout(std::span<const u8> input, std::span<u8> output);
NvResult SetNVMAPfd(IoctlSetNvmapFD&);
NvResult Submit(IoctlSubmit& params, std::span<u8> input, DeviceFD fd);
NvResult GetSyncpoint(IoctlGetSyncpoint& params);
NvResult GetWaitbase(IoctlGetWaitbase& params);
NvResult MapBuffer(IoctlMapBuffer& params, std::span<MapBufferEntry> entries);
NvResult UnmapBuffer(IoctlMapBuffer& params, std::span<MapBufferEntry> entries);
NvResult SetSubmitTimeout(u32 timeout);
Kernel::KEvent* QueryEvent(u32 event_id) override;

View File

@@ -5,6 +5,7 @@
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/hle/service/nvdrv/devices/ioctl_serialization.h"
#include "core/hle/service/nvdrv/devices/nvhost_nvjpg.h"
namespace Service::Nvidia::Devices {
@@ -18,7 +19,7 @@ NvResult nvhost_nvjpg::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> in
case 'H':
switch (command.cmd) {
case 0x1:
return SetNVMAPfd(input, output);
return WrapFixed(this, &nvhost_nvjpg::SetNVMAPfd, input, output);
default:
break;
}
@@ -46,9 +47,7 @@ NvResult nvhost_nvjpg::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> in
void nvhost_nvjpg::OnOpen(DeviceFD fd) {}
void nvhost_nvjpg::OnClose(DeviceFD fd) {}
NvResult nvhost_nvjpg::SetNVMAPfd(std::span<const u8> input, std::span<u8> output) {
IoctlSetNvmapFD params{};
std::memcpy(&params, input.data(), input.size());
NvResult nvhost_nvjpg::SetNVMAPfd(IoctlSetNvmapFD& params) {
LOG_DEBUG(Service_NVDRV, "called, fd={}", params.nvmap_fd);
nvmap_fd = params.nvmap_fd;

View File

@@ -33,7 +33,7 @@ private:
s32_le nvmap_fd{};
NvResult SetNVMAPfd(std::span<const u8> input, std::span<u8> output);
NvResult SetNVMAPfd(IoctlSetNvmapFD& params);
};
} // namespace Service::Nvidia::Devices

View File

@@ -5,6 +5,7 @@
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/devices/ioctl_serialization.h"
#include "core/hle/service/nvdrv/devices/nvhost_vic.h"
#include "video_core/renderer_base.h"
@@ -25,16 +26,16 @@ NvResult nvhost_vic::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> inpu
if (!host1x_file.fd_to_id.contains(fd)) {
host1x_file.fd_to_id[fd] = host1x_file.vic_next_id++;
}
return Submit(fd, input, output);
return WrapFixedVariable(this, &nvhost_vic::Submit, input, output, fd);
}
case 0x2:
return GetSyncpoint(input, output);
return WrapFixed(this, &nvhost_vic::GetSyncpoint, input, output);
case 0x3:
return GetWaitbase(input, output);
return WrapFixed(this, &nvhost_vic::GetWaitbase, input, output);
case 0x9:
return MapBuffer(input, output);
return WrapFixedVariable(this, &nvhost_vic::MapBuffer, input, output);
case 0xa:
return UnmapBuffer(input, output);
return WrapFixedVariable(this, &nvhost_vic::UnmapBuffer, input, output);
default:
break;
}
@@ -42,7 +43,7 @@ NvResult nvhost_vic::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> inpu
case 'H':
switch (command.cmd) {
case 0x1:
return SetNVMAPfd(input);
return WrapFixed(this, &nvhost_vic::SetNVMAPfd, input, output);
default:
break;
}

View File

@@ -13,6 +13,7 @@
#include "core/hle/kernel/k_process.h"
#include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/core/nvmap.h"
#include "core/hle/service/nvdrv/devices/ioctl_serialization.h"
#include "core/hle/service/nvdrv/devices/nvmap.h"
#include "core/memory.h"
@@ -31,17 +32,17 @@ NvResult nvmap::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> input,
case 0x1:
switch (command.cmd) {
case 0x1:
return IocCreate(input, output);
return WrapFixed(this, &nvmap::IocCreate, input, output);
case 0x3:
return IocFromId(input, output);
return WrapFixed(this, &nvmap::IocFromId, input, output);
case 0x4:
return IocAlloc(input, output);
return WrapFixed(this, &nvmap::IocAlloc, input, output);
case 0x5:
return IocFree(input, output);
return WrapFixed(this, &nvmap::IocFree, input, output);
case 0x9:
return IocParam(input, output);
return WrapFixed(this, &nvmap::IocParam, input, output);
case 0xe:
return IocGetId(input, output);
return WrapFixed(this, &nvmap::IocGetId, input, output);
default:
break;
}
@@ -69,9 +70,7 @@ NvResult nvmap::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> input, st
void nvmap::OnOpen(DeviceFD fd) {}
void nvmap::OnClose(DeviceFD fd) {}
NvResult nvmap::IocCreate(std::span<const u8> input, std::span<u8> output) {
IocCreateParams params;
std::memcpy(&params, input.data(), sizeof(params));
NvResult nvmap::IocCreate(IocCreateParams& params) {
LOG_DEBUG(Service_NVDRV, "called, size=0x{:08X}", params.size);
std::shared_ptr<NvCore::NvMap::Handle> handle_description{};
@@ -85,13 +84,10 @@ NvResult nvmap::IocCreate(std::span<const u8> input, std::span<u8> output) {
params.handle = handle_description->id;
LOG_DEBUG(Service_NVDRV, "handle: {}, size: 0x{:X}", handle_description->id, params.size);
std::memcpy(output.data(), &params, sizeof(params));
return NvResult::Success;
}
NvResult nvmap::IocAlloc(std::span<const u8> input, std::span<u8> output) {
IocAllocParams params;
std::memcpy(&params, input.data(), sizeof(params));
NvResult nvmap::IocAlloc(IocAllocParams& params) {
LOG_DEBUG(Service_NVDRV, "called, addr={:X}", params.address);
if (!params.handle) {
@@ -133,14 +129,10 @@ NvResult nvmap::IocAlloc(std::span<const u8> input, std::span<u8> output) {
handle_description->size,
Kernel::KMemoryPermission::None, true, false)
.IsSuccess());
std::memcpy(output.data(), &params, sizeof(params));
return result;
}
NvResult nvmap::IocGetId(std::span<const u8> input, std::span<u8> output) {
IocGetIdParams params;
std::memcpy(&params, input.data(), sizeof(params));
NvResult nvmap::IocGetId(IocGetIdParams& params) {
LOG_DEBUG(Service_NVDRV, "called");
// See the comment in FromId for extra info on this function
@@ -157,14 +149,10 @@ NvResult nvmap::IocGetId(std::span<const u8> input, std::span<u8> output) {
}
params.id = handle_description->id;
std::memcpy(output.data(), &params, sizeof(params));
return NvResult::Success;
}
NvResult nvmap::IocFromId(std::span<const u8> input, std::span<u8> output) {
IocFromIdParams params;
std::memcpy(&params, input.data(), sizeof(params));
NvResult nvmap::IocFromId(IocFromIdParams& params) {
LOG_DEBUG(Service_NVDRV, "called, id:{}", params.id);
// Handles and IDs are always the same value in nvmap however IDs can be used globally given the
@@ -188,16 +176,12 @@ NvResult nvmap::IocFromId(std::span<const u8> input, std::span<u8> output) {
return result;
}
params.handle = handle_description->id;
std::memcpy(output.data(), &params, sizeof(params));
return NvResult::Success;
}
NvResult nvmap::IocParam(std::span<const u8> input, std::span<u8> output) {
NvResult nvmap::IocParam(IocParamParams& params) {
enum class ParamTypes { Size = 1, Alignment = 2, Base = 3, Heap = 4, Kind = 5, Compr = 6 };
IocParamParams params;
std::memcpy(&params, input.data(), sizeof(params));
LOG_DEBUG(Service_NVDRV, "called type={}", params.param);
if (!params.handle) {
@@ -237,14 +221,10 @@ NvResult nvmap::IocParam(std::span<const u8> input, std::span<u8> output) {
return NvResult::BadValue;
}
std::memcpy(output.data(), &params, sizeof(params));
return NvResult::Success;
}
NvResult nvmap::IocFree(std::span<const u8> input, std::span<u8> output) {
IocFreeParams params;
std::memcpy(&params, input.data(), sizeof(params));
NvResult nvmap::IocFree(IocFreeParams& params) {
LOG_DEBUG(Service_NVDRV, "called");
if (!params.handle) {
@@ -267,7 +247,6 @@ NvResult nvmap::IocFree(std::span<const u8> input, std::span<u8> output) {
// This is possible when there's internal dups or other duplicates.
}
std::memcpy(output.data(), &params, sizeof(params));
return NvResult::Success;
}

View File

@@ -99,12 +99,12 @@ public:
};
static_assert(sizeof(IocGetIdParams) == 8, "IocGetIdParams has wrong size");
NvResult IocCreate(std::span<const u8> input, std::span<u8> output);
NvResult IocAlloc(std::span<const u8> input, std::span<u8> output);
NvResult IocGetId(std::span<const u8> input, std::span<u8> output);
NvResult IocFromId(std::span<const u8> input, std::span<u8> output);
NvResult IocParam(std::span<const u8> input, std::span<u8> output);
NvResult IocFree(std::span<const u8> input, std::span<u8> output);
NvResult IocCreate(IocCreateParams& params);
NvResult IocAlloc(IocAllocParams& params);
NvResult IocGetId(IocGetIdParams& params);
NvResult IocFromId(IocFromIdParams& params);
NvResult IocParam(IocParamParams& params);
NvResult IocFree(IocFreeParams& params);
private:
/// Id to use for the next handle that is created.

View File

@@ -3,6 +3,7 @@
#pragma once
#include "common/common_funcs.h"
#include "common/common_types.h"
namespace Service::android {
@@ -21,5 +22,6 @@ enum class BufferTransformFlags : u32 {
/// Rotate source image 270 degrees clockwise
Rotate270 = 0x07,
};
DECLARE_ENUM_FLAG_OPERATORS(BufferTransformFlags);
} // namespace Service::android

View File

@@ -71,24 +71,17 @@ Result AllocateIoForProcessAddressSpace(Common::ProcessAddress* out_map_address,
R_SUCCEED();
}
template <typename T>
std::span<u8> SerializeIoc(T& params) {
return std::span(reinterpret_cast<u8*>(std::addressof(params)), sizeof(T));
}
Result CreateNvMapHandle(u32* out_nv_map_handle, Nvidia::Devices::nvmap& nvmap, u32 size) {
// Create a handle.
Nvidia::Devices::nvmap::IocCreateParams create_in_params{
Nvidia::Devices::nvmap::IocCreateParams create_params{
.size = size,
.handle = 0,
};
Nvidia::Devices::nvmap::IocCreateParams create_out_params{};
R_UNLESS(nvmap.IocCreate(SerializeIoc(create_in_params), SerializeIoc(create_out_params)) ==
Nvidia::NvResult::Success,
R_UNLESS(nvmap.IocCreate(create_params) == Nvidia::NvResult::Success,
VI::ResultOperationFailed);
// Assign the output handle.
*out_nv_map_handle = create_out_params.handle;
*out_nv_map_handle = create_params.handle;
// We succeeded.
R_SUCCEED();
@@ -96,13 +89,10 @@ Result CreateNvMapHandle(u32* out_nv_map_handle, Nvidia::Devices::nvmap& nvmap,
Result FreeNvMapHandle(Nvidia::Devices::nvmap& nvmap, u32 handle) {
// Free the handle.
Nvidia::Devices::nvmap::IocFreeParams free_in_params{
Nvidia::Devices::nvmap::IocFreeParams free_params{
.handle = handle,
};
Nvidia::Devices::nvmap::IocFreeParams free_out_params{};
R_UNLESS(nvmap.IocFree(SerializeIoc(free_in_params), SerializeIoc(free_out_params)) ==
Nvidia::NvResult::Success,
VI::ResultOperationFailed);
R_UNLESS(nvmap.IocFree(free_params) == Nvidia::NvResult::Success, VI::ResultOperationFailed);
// We succeeded.
R_SUCCEED();
@@ -111,7 +101,7 @@ Result FreeNvMapHandle(Nvidia::Devices::nvmap& nvmap, u32 handle) {
Result AllocNvMapHandle(Nvidia::Devices::nvmap& nvmap, u32 handle, Common::ProcessAddress buffer,
u32 size) {
// Assign the allocated memory to the handle.
Nvidia::Devices::nvmap::IocAllocParams alloc_in_params{
Nvidia::Devices::nvmap::IocAllocParams alloc_params{
.handle = handle,
.heap_mask = 0,
.flags = {},
@@ -119,10 +109,7 @@ Result AllocNvMapHandle(Nvidia::Devices::nvmap& nvmap, u32 handle, Common::Proce
.kind = 0,
.address = GetInteger(buffer),
};
Nvidia::Devices::nvmap::IocAllocParams alloc_out_params{};
R_UNLESS(nvmap.IocAlloc(SerializeIoc(alloc_in_params), SerializeIoc(alloc_out_params)) ==
Nvidia::NvResult::Success,
VI::ResultOperationFailed);
R_UNLESS(nvmap.IocAlloc(alloc_params) == Nvidia::NvResult::Success, VI::ResultOperationFailed);
// We succeeded.
R_SUCCEED();

View File

@@ -39,6 +39,18 @@ bool IsConnectionBased(Type type) {
}
}
template <typename T>
T GetValue(std::span<const u8> buffer) {
T t{};
std::memcpy(&t, buffer.data(), std::min(sizeof(T), buffer.size()));
return t;
}
template <typename T>
void PutValue(std::span<u8> buffer, const T& t) {
std::memcpy(buffer.data(), &t, std::min(sizeof(T), buffer.size()));
}
} // Anonymous namespace
void BSD::PollWork::Execute(BSD* bsd) {
@@ -316,22 +328,12 @@ void BSD::SetSockOpt(HLERequestContext& ctx) {
const s32 fd = rp.Pop<s32>();
const u32 level = rp.Pop<u32>();
const OptName optname = static_cast<OptName>(rp.Pop<u32>());
const auto buffer = ctx.ReadBuffer();
const u8* optval = buffer.empty() ? nullptr : buffer.data();
size_t optlen = buffer.size();
std::array<u64, 2> values;
if ((optname == OptName::SNDTIMEO || optname == OptName::RCVTIMEO) && buffer.size() == 8) {
std::memcpy(values.data(), buffer.data(), sizeof(values));
optlen = sizeof(values);
optval = reinterpret_cast<const u8*>(values.data());
}
const auto optval = ctx.ReadBuffer();
LOG_DEBUG(Service, "called. fd={} level={} optname=0x{:x} optlen={}", fd, level,
static_cast<u32>(optname), optlen);
static_cast<u32>(optname), optval.size());
BuildErrnoResponse(ctx, SetSockOptImpl(fd, level, optname, optlen, optval));
BuildErrnoResponse(ctx, SetSockOptImpl(fd, level, optname, optval));
}
void BSD::Shutdown(HLERequestContext& ctx) {
@@ -521,18 +523,19 @@ std::pair<s32, Errno> BSD::SocketImpl(Domain domain, Type type, Protocol protoco
std::pair<s32, Errno> BSD::PollImpl(std::vector<u8>& write_buffer, std::span<const u8> read_buffer,
s32 nfds, s32 timeout) {
if (nfds <= 0) {
// When no entries are provided, -1 is returned with errno zero
return {-1, Errno::SUCCESS};
}
if (read_buffer.size() < nfds * sizeof(PollFD)) {
return {-1, Errno::INVAL};
}
if (write_buffer.size() < nfds * sizeof(PollFD)) {
return {-1, Errno::INVAL};
}
if (nfds == 0) {
// When no entries are provided, -1 is returned with errno zero
return {-1, Errno::SUCCESS};
}
const size_t length = std::min(read_buffer.size(), write_buffer.size());
std::vector<PollFD> fds(nfds);
std::memcpy(fds.data(), read_buffer.data(), length);
std::memcpy(fds.data(), read_buffer.data(), nfds * sizeof(PollFD));
if (timeout >= 0) {
const s64 seconds = timeout / 1000;
@@ -580,7 +583,7 @@ std::pair<s32, Errno> BSD::PollImpl(std::vector<u8>& write_buffer, std::span<con
for (size_t i = 0; i < num; ++i) {
fds[i].revents = Translate(host_pollfds[i].revents);
}
std::memcpy(write_buffer.data(), fds.data(), length);
std::memcpy(write_buffer.data(), fds.data(), nfds * sizeof(PollFD));
return Translate(result);
}
@@ -608,8 +611,7 @@ std::pair<s32, Errno> BSD::AcceptImpl(s32 fd, std::vector<u8>& write_buffer) {
new_descriptor.is_connection_based = descriptor.is_connection_based;
const SockAddrIn guest_addr_in = Translate(result.sockaddr_in);
const size_t length = std::min(sizeof(guest_addr_in), write_buffer.size());
std::memcpy(write_buffer.data(), &guest_addr_in, length);
PutValue(write_buffer, guest_addr_in);
return {new_fd, Errno::SUCCESS};
}
@@ -619,8 +621,7 @@ Errno BSD::BindImpl(s32 fd, std::span<const u8> addr) {
return Errno::BADF;
}
ASSERT(addr.size() == sizeof(SockAddrIn));
SockAddrIn addr_in;
std::memcpy(&addr_in, addr.data(), sizeof(addr_in));
auto addr_in = GetValue<SockAddrIn>(addr);
return Translate(file_descriptors[fd]->socket->Bind(Translate(addr_in)));
}
@@ -631,8 +632,7 @@ Errno BSD::ConnectImpl(s32 fd, std::span<const u8> addr) {
}
UNIMPLEMENTED_IF(addr.size() != sizeof(SockAddrIn));
SockAddrIn addr_in;
std::memcpy(&addr_in, addr.data(), sizeof(addr_in));
auto addr_in = GetValue<SockAddrIn>(addr);
return Translate(file_descriptors[fd]->socket->Connect(Translate(addr_in)));
}
@@ -650,7 +650,7 @@ Errno BSD::GetPeerNameImpl(s32 fd, std::vector<u8>& write_buffer) {
ASSERT(write_buffer.size() >= sizeof(guest_addrin));
write_buffer.resize(sizeof(guest_addrin));
std::memcpy(write_buffer.data(), &guest_addrin, sizeof(guest_addrin));
PutValue(write_buffer, guest_addrin);
return Translate(bsd_errno);
}
@@ -667,7 +667,7 @@ Errno BSD::GetSockNameImpl(s32 fd, std::vector<u8>& write_buffer) {
ASSERT(write_buffer.size() >= sizeof(guest_addrin));
write_buffer.resize(sizeof(guest_addrin));
std::memcpy(write_buffer.data(), &guest_addrin, sizeof(guest_addrin));
PutValue(write_buffer, guest_addrin);
return Translate(bsd_errno);
}
@@ -725,7 +725,7 @@ Errno BSD::GetSockOptImpl(s32 fd, u32 level, OptName optname, std::vector<u8>& o
optval.size() == sizeof(Errno), { return Errno::INVAL; },
"Incorrect getsockopt option size");
optval.resize(sizeof(Errno));
memcpy(optval.data(), &translated_pending_err, sizeof(Errno));
PutValue(optval, translated_pending_err);
}
return Translate(getsockopt_err);
}
@@ -735,7 +735,7 @@ Errno BSD::GetSockOptImpl(s32 fd, u32 level, OptName optname, std::vector<u8>& o
}
}
Errno BSD::SetSockOptImpl(s32 fd, u32 level, OptName optname, size_t optlen, const void* optval) {
Errno BSD::SetSockOptImpl(s32 fd, u32 level, OptName optname, std::span<const u8> optval) {
if (!IsFileDescriptorValid(fd)) {
return Errno::BADF;
}
@@ -748,17 +748,15 @@ Errno BSD::SetSockOptImpl(s32 fd, u32 level, OptName optname, size_t optlen, con
Network::SocketBase* const socket = file_descriptors[fd]->socket.get();
if (optname == OptName::LINGER) {
ASSERT(optlen == sizeof(Linger));
Linger linger;
std::memcpy(&linger, optval, sizeof(linger));
ASSERT(optval.size() == sizeof(Linger));
auto linger = GetValue<Linger>(optval);
ASSERT(linger.onoff == 0 || linger.onoff == 1);
return Translate(socket->SetLinger(linger.onoff != 0, linger.linger));
}
ASSERT(optlen == sizeof(u32));
u32 value;
std::memcpy(&value, optval, sizeof(value));
ASSERT(optval.size() == sizeof(u32));
auto value = GetValue<u32>(optval);
switch (optname) {
case OptName::REUSEADDR:
@@ -862,7 +860,7 @@ std::pair<s32, Errno> BSD::RecvFromImpl(s32 fd, u32 flags, std::vector<u8>& mess
} else {
ASSERT(addr.size() == sizeof(SockAddrIn));
const SockAddrIn result = Translate(addr_in);
std::memcpy(addr.data(), &result, sizeof(result));
PutValue(addr, result);
}
}
@@ -886,8 +884,7 @@ std::pair<s32, Errno> BSD::SendToImpl(s32 fd, u32 flags, std::span<const u8> mes
Network::SockAddrIn* p_addr_in = nullptr;
if (!addr.empty()) {
ASSERT(addr.size() == sizeof(SockAddrIn));
SockAddrIn guest_addr_in;
std::memcpy(&guest_addr_in, addr.data(), sizeof(guest_addr_in));
auto guest_addr_in = GetValue<SockAddrIn>(addr);
addr_in = Translate(guest_addr_in);
p_addr_in = &addr_in;
}

View File

@@ -163,7 +163,7 @@ private:
Errno ListenImpl(s32 fd, s32 backlog);
std::pair<s32, Errno> FcntlImpl(s32 fd, FcntlCmd cmd, s32 arg);
Errno GetSockOptImpl(s32 fd, u32 level, OptName optname, std::vector<u8>& optval);
Errno SetSockOptImpl(s32 fd, u32 level, OptName optname, size_t optlen, const void* optval);
Errno SetSockOptImpl(s32 fd, u32 level, OptName optname, std::span<const u8> optval);
Errno ShutdownImpl(s32 fd, s32 how);
std::pair<s32, Errno> RecvImpl(s32 fd, u32 flags, std::vector<u8>& message);
std::pair<s32, Errno> RecvFromImpl(s32 fd, u32 flags, std::vector<u8>& message,

View File

@@ -41,7 +41,7 @@ struct Memory::Impl {
explicit Impl(Core::System& system_) : system{system_} {}
void SetCurrentPageTable(Kernel::KProcess& process, u32 core_id) {
current_page_table = &process.GetPageTable().PageTableImpl();
current_page_table = &process.GetPageTable().GetImpl();
current_page_table->fastmem_arena = system.DeviceMemory().buffer.VirtualBasePointer();
const std::size_t address_space_width = process.GetPageTable().GetAddressSpaceWidth();
@@ -195,7 +195,7 @@ struct Memory::Impl {
bool WalkBlock(const Common::ProcessAddress addr, const std::size_t size, auto on_unmapped,
auto on_memory, auto on_rasterizer, auto increment) {
const auto& page_table = system.ApplicationProcess()->GetPageTable().PageTableImpl();
const auto& page_table = system.ApplicationProcess()->GetPageTable().GetImpl();
std::size_t remaining_size = size;
std::size_t page_index = addr >> YUZU_PAGEBITS;
std::size_t page_offset = addr & YUZU_PAGEMASK;
@@ -826,7 +826,7 @@ void Memory::UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress b
bool Memory::IsValidVirtualAddress(const Common::ProcessAddress vaddr) const {
const Kernel::KProcess& process = *system.ApplicationProcess();
const auto& page_table = process.GetPageTable().PageTableImpl();
const auto& page_table = process.GetPageTable().GetImpl();
const size_t page = vaddr >> YUZU_PAGEBITS;
if (page >= page_table.pointers.size()) {
return false;

View File

@@ -3,6 +3,7 @@
#include "common/alignment.h"
#include "core/memory.h"
#include "video_core/control/channel_state.h"
#include "video_core/host1x/host1x.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_null/null_rasterizer.h"
@@ -99,8 +100,14 @@ bool RasterizerNull::AccelerateDisplay(const Tegra::FramebufferConfig& config,
}
void RasterizerNull::LoadDiskResources(u64 title_id, std::stop_token stop_loading,
const VideoCore::DiskResourceLoadCallback& callback) {}
void RasterizerNull::InitializeChannel(Tegra::Control::ChannelState& channel) {}
void RasterizerNull::BindChannel(Tegra::Control::ChannelState& channel) {}
void RasterizerNull::ReleaseChannel(s32 channel_id) {}
void RasterizerNull::InitializeChannel(Tegra::Control::ChannelState& channel) {
CreateChannel(channel);
}
void RasterizerNull::BindChannel(Tegra::Control::ChannelState& channel) {
BindToChannel(channel.bind_id);
}
void RasterizerNull::ReleaseChannel(s32 channel_id) {
EraseChannel(channel_id);
}
} // namespace Null

View File

@@ -137,6 +137,56 @@ BlitScreen::BlitScreen(Core::Memory::Memory& cpu_memory_, Core::Frontend::EmuWin
BlitScreen::~BlitScreen() = default;
static Common::Rectangle<f32> NormalizeCrop(const Tegra::FramebufferConfig& framebuffer,
const ScreenInfo& screen_info) {
f32 left, top, right, bottom;
if (!framebuffer.crop_rect.IsEmpty()) {
// If crop rectangle is not empty, apply properties from rectangle.
left = static_cast<f32>(framebuffer.crop_rect.left);
top = static_cast<f32>(framebuffer.crop_rect.top);
right = static_cast<f32>(framebuffer.crop_rect.right);
bottom = static_cast<f32>(framebuffer.crop_rect.bottom);
} else {
// Otherwise, fall back to framebuffer dimensions.
left = 0;
top = 0;
right = static_cast<f32>(framebuffer.width);
bottom = static_cast<f32>(framebuffer.height);
}
// Apply transformation flags.
auto framebuffer_transform_flags = framebuffer.transform_flags;
if (True(framebuffer_transform_flags & Service::android::BufferTransformFlags::FlipH)) {
// Switch left and right.
std::swap(left, right);
}
if (True(framebuffer_transform_flags & Service::android::BufferTransformFlags::FlipV)) {
// Switch top and bottom.
std::swap(top, bottom);
}
framebuffer_transform_flags &= ~Service::android::BufferTransformFlags::FlipH;
framebuffer_transform_flags &= ~Service::android::BufferTransformFlags::FlipV;
if (True(framebuffer_transform_flags)) {
UNIMPLEMENTED_MSG("Unsupported framebuffer_transform_flags={}",
static_cast<u32>(framebuffer_transform_flags));
}
// Get the screen properties.
const f32 screen_width = static_cast<f32>(screen_info.width);
const f32 screen_height = static_cast<f32>(screen_info.height);
// Normalize coordinate space.
left /= screen_width;
top /= screen_height;
right /= screen_width;
bottom /= screen_height;
return Common::Rectangle<f32>(left, top, right, bottom);
}
void BlitScreen::Recreate() {
present_manager.WaitPresent();
scheduler.Finish();
@@ -354,17 +404,10 @@ void BlitScreen::Draw(const Tegra::FramebufferConfig& framebuffer,
source_image_view = smaa->Draw(scheduler, image_index, source_image, source_image_view);
}
if (fsr) {
auto crop_rect = framebuffer.crop_rect;
if (crop_rect.GetWidth() == 0) {
crop_rect.right = framebuffer.width;
}
if (crop_rect.GetHeight() == 0) {
crop_rect.bottom = framebuffer.height;
}
crop_rect = crop_rect.Scale(Settings::values.resolution_info.up_factor);
VkExtent2D fsr_input_size{
.width = Settings::values.resolution_info.ScaleUp(framebuffer.width),
.height = Settings::values.resolution_info.ScaleUp(framebuffer.height),
const auto crop_rect = NormalizeCrop(framebuffer, screen_info);
const VkExtent2D fsr_input_size{
.width = Settings::values.resolution_info.ScaleUp(screen_info.width),
.height = Settings::values.resolution_info.ScaleUp(screen_info.height),
};
VkImageView fsr_image_view =
fsr->Draw(scheduler, image_index, source_image_view, fsr_input_size, crop_rect);
@@ -1397,61 +1440,37 @@ void BlitScreen::SetUniformData(BufferData& data, const Layout::FramebufferLayou
void BlitScreen::SetVertexData(BufferData& data, const Tegra::FramebufferConfig& framebuffer,
const Layout::FramebufferLayout layout) const {
const auto& framebuffer_transform_flags = framebuffer.transform_flags;
const auto& framebuffer_crop_rect = framebuffer.crop_rect;
f32 left, top, right, bottom;
static constexpr Common::Rectangle<f32> texcoords{0.f, 0.f, 1.f, 1.f};
auto left = texcoords.left;
auto right = texcoords.right;
if (fsr) {
// FSR has already applied the crop, so we just want to render the image
// it has produced.
left = 0;
top = 0;
right = 1;
bottom = 1;
} else {
// Get the normalized crop rectangle.
const auto crop = NormalizeCrop(framebuffer, screen_info);
switch (framebuffer_transform_flags) {
case Service::android::BufferTransformFlags::Unset:
break;
case Service::android::BufferTransformFlags::FlipV:
// Flip the framebuffer vertically
left = texcoords.right;
right = texcoords.left;
break;
default:
UNIMPLEMENTED_MSG("Unsupported framebuffer_transform_flags={}",
static_cast<u32>(framebuffer_transform_flags));
break;
}
UNIMPLEMENTED_IF(framebuffer_crop_rect.left != 0);
f32 left_start{};
if (framebuffer_crop_rect.Top() > 0) {
left_start = static_cast<f32>(framebuffer_crop_rect.Top()) /
static_cast<f32>(framebuffer_crop_rect.Bottom());
}
f32 scale_u = static_cast<f32>(framebuffer.width) / static_cast<f32>(screen_info.width);
f32 scale_v = static_cast<f32>(framebuffer.height) / static_cast<f32>(screen_info.height);
// Scale the output by the crop width/height. This is commonly used with 1280x720 rendering
// (e.g. handheld mode) on a 1920x1080 framebuffer.
if (!fsr) {
if (framebuffer_crop_rect.GetWidth() > 0) {
scale_u = static_cast<f32>(framebuffer_crop_rect.GetWidth()) /
static_cast<f32>(screen_info.width);
}
if (framebuffer_crop_rect.GetHeight() > 0) {
scale_v = static_cast<f32>(framebuffer_crop_rect.GetHeight()) /
static_cast<f32>(screen_info.height);
}
// Apply the crop.
left = crop.left;
top = crop.top;
right = crop.right;
bottom = crop.bottom;
}
// Map the coordinates to the screen.
const auto& screen = layout.screen;
const auto x = static_cast<f32>(screen.left);
const auto y = static_cast<f32>(screen.top);
const auto w = static_cast<f32>(screen.GetWidth());
const auto h = static_cast<f32>(screen.GetHeight());
data.vertices[0] = ScreenRectVertex(x, y, texcoords.top * scale_u, left_start + left * scale_v);
data.vertices[1] =
ScreenRectVertex(x + w, y, texcoords.bottom * scale_u, left_start + left * scale_v);
data.vertices[2] =
ScreenRectVertex(x, y + h, texcoords.top * scale_u, left_start + right * scale_v);
data.vertices[3] =
ScreenRectVertex(x + w, y + h, texcoords.bottom * scale_u, left_start + right * scale_v);
data.vertices[0] = ScreenRectVertex(x, y, left, top);
data.vertices[1] = ScreenRectVertex(x + w, y, right, top);
data.vertices[2] = ScreenRectVertex(x, y + h, left, bottom);
data.vertices[3] = ScreenRectVertex(x + w, y + h, right, bottom);
}
void BlitScreen::CreateSMAA(VkExtent2D smaa_size) {

View File

@@ -34,7 +34,7 @@ FSR::FSR(const Device& device_, MemoryAllocator& memory_allocator_, size_t image
}
VkImageView FSR::Draw(Scheduler& scheduler, size_t image_index, VkImageView image_view,
VkExtent2D input_image_extent, const Common::Rectangle<int>& crop_rect) {
VkExtent2D input_image_extent, const Common::Rectangle<f32>& crop_rect) {
UpdateDescriptorSet(image_index, image_view);
@@ -61,15 +61,21 @@ VkImageView FSR::Draw(Scheduler& scheduler, size_t image_index, VkImageView imag
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, *easu_pipeline);
std::array<u32, 4 * 4> push_constants;
FsrEasuConOffset(
push_constants.data() + 0, push_constants.data() + 4, push_constants.data() + 8,
push_constants.data() + 12,
const f32 input_image_width = static_cast<f32>(input_image_extent.width);
const f32 input_image_height = static_cast<f32>(input_image_extent.height);
const f32 output_image_width = static_cast<f32>(output_size.width);
const f32 output_image_height = static_cast<f32>(output_size.height);
const f32 viewport_width = (crop_rect.right - crop_rect.left) * input_image_width;
const f32 viewport_x = crop_rect.left * input_image_width;
const f32 viewport_height = (crop_rect.bottom - crop_rect.top) * input_image_height;
const f32 viewport_y = crop_rect.top * input_image_height;
static_cast<f32>(crop_rect.GetWidth()), static_cast<f32>(crop_rect.GetHeight()),
static_cast<f32>(input_image_extent.width), static_cast<f32>(input_image_extent.height),
static_cast<f32>(output_size.width), static_cast<f32>(output_size.height),
static_cast<f32>(crop_rect.left), static_cast<f32>(crop_rect.top));
std::array<u32, 4 * 4> push_constants;
FsrEasuConOffset(push_constants.data() + 0, push_constants.data() + 4,
push_constants.data() + 8, push_constants.data() + 12,
viewport_width, viewport_height, input_image_width, input_image_height,
output_image_width, output_image_height, viewport_x, viewport_y);
cmdbuf.PushConstants(*pipeline_layout, VK_SHADER_STAGE_COMPUTE_BIT, push_constants);
{

View File

@@ -17,7 +17,7 @@ public:
explicit FSR(const Device& device, MemoryAllocator& memory_allocator, size_t image_count,
VkExtent2D output_size);
VkImageView Draw(Scheduler& scheduler, size_t image_index, VkImageView image_view,
VkExtent2D input_image_extent, const Common::Rectangle<int>& crop_rect);
VkExtent2D input_image_extent, const Common::Rectangle<f32>& crop_rect);
private:
void CreateDescriptorPool();

View File

@@ -82,7 +82,7 @@ VkViewport GetViewportState(const Device& device, const Maxwell& regs, size_t in
}
if (y_negate) {
y += height;
y += conv(static_cast<f32>(regs.surface_clip.height));
height = -height;
}
@@ -923,9 +923,13 @@ void RasterizerVulkan::UpdateDynamicStates() {
}
void RasterizerVulkan::HandleTransformFeedback() {
static std::once_flag warn_unsupported;
const auto& regs = maxwell3d->regs;
if (!device.IsExtTransformFeedbackSupported()) {
LOG_ERROR(Render_Vulkan, "Transform feedbacks used but not supported");
std::call_once(warn_unsupported, [&] {
LOG_ERROR(Render_Vulkan, "Transform feedbacks used but not supported");
});
return;
}
query_cache.CounterEnable(VideoCommon::QueryType::StreamingByteCount,

View File

@@ -1,4 +1,4 @@
// SPDX-FileCopyrightText: 2014 Citra Emulator Project
// SPDX-FileCopyrightText: 2014 Citra Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once

View File

@@ -1,4 +1,4 @@
// Text : Copyright 2022 yuzu Emulator Project
// Text : Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#pragma once

View File

@@ -152,7 +152,7 @@ void ConfigureInput::Initialize(InputCommon::InputSubsystem* input_subsystem,
connect(player_controllers[0], &ConfigureInputPlayer::HandheldStateChanged,
[this](bool is_handheld) { UpdateDockedState(is_handheld); });
advanced = new ConfigureInputAdvanced(this);
advanced = new ConfigureInputAdvanced(hid_core, this);
ui->tabAdvanced->setLayout(new QHBoxLayout(ui->tabAdvanced));
ui->tabAdvanced->layout()->addWidget(advanced);

View File

@@ -1,4 +1,4 @@
// SPDX-FileCopyrightText: 2016 Citra Emulator Project
// SPDX-FileCopyrightText: 2016 Citra Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once

View File

@@ -4,11 +4,13 @@
#include <QColorDialog>
#include "common/settings.h"
#include "core/core.h"
#include "core/hid/emulated_controller.h"
#include "core/hid/hid_core.h"
#include "ui_configure_input_advanced.h"
#include "yuzu/configuration/configure_input_advanced.h"
ConfigureInputAdvanced::ConfigureInputAdvanced(QWidget* parent)
: QWidget(parent), ui(std::make_unique<Ui::ConfigureInputAdvanced>()) {
ConfigureInputAdvanced::ConfigureInputAdvanced(Core::HID::HIDCore& hid_core_, QWidget* parent)
: QWidget(parent), ui(std::make_unique<Ui::ConfigureInputAdvanced>()), hid_core{hid_core_} {
ui->setupUi(this);
controllers_color_buttons = {{
@@ -123,6 +125,8 @@ void ConfigureInputAdvanced::ApplyConfiguration() {
player.button_color_left = colors[1];
player.body_color_right = colors[2];
player.button_color_right = colors[3];
hid_core.GetEmulatedControllerByIndex(player_idx)->ReloadColorsFromSettings();
}
Settings::values.debug_pad_enabled = ui->debug_enabled->isChecked();

View File

@@ -14,11 +14,15 @@ namespace Ui {
class ConfigureInputAdvanced;
}
namespace Core::HID {
class HIDCore;
} // namespace Core::HID
class ConfigureInputAdvanced : public QWidget {
Q_OBJECT
public:
explicit ConfigureInputAdvanced(QWidget* parent = nullptr);
explicit ConfigureInputAdvanced(Core::HID::HIDCore& hid_core_, QWidget* parent = nullptr);
~ConfigureInputAdvanced() override;
void ApplyConfiguration();
@@ -44,4 +48,6 @@ private:
std::array<std::array<QColor, 4>, 8> controllers_colors;
std::array<std::array<QPushButton*, 4>, 8> controllers_color_buttons;
Core::HID::HIDCore& hid_core;
};

View File

@@ -1,4 +1,4 @@
// SPDX-FileCopyrightText: 2016 Citra Emulator Project
// SPDX-FileCopyrightText: 2016 Citra Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once

Some files were not shown because too many files have changed in this diff Show More